Department of Physics, CB 1105, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130-4899, USA; Department of Radiology, CB 8225, Washington University School of Medicine, 4525 Scott Ave., St. Louis, MO 63110, USA.
Neuroimage. 2014 Jan 15;85 Pt 1(0 1):104-16. doi: 10.1016/j.neuroimage.2013.05.105. Epub 2013 Jun 2.
High density diffuse optical tomography (HD-DOT) is a noninvasive neuroimaging modality with moderate spatial resolution and localization accuracy. Due to portability and wear-ability advantages, HD-DOT has the potential to be used in populations that are not amenable to functional magnetic resonance imaging (fMRI), such as hospitalized patients and young children. However, whereas the use of event-related stimuli designs, general linear model (GLM) analysis, and imaging statistics are standardized and routine with fMRI, such tools are not yet common practice in HD-DOT. In this paper we adapt and optimize fundamental elements of fMRI analysis for application to HD-DOT. We show the use of event-related protocols and GLM de-convolution analysis in un-mixing multi-stimuli event-related HD-DOT data. Statistical parametric mapping (SPM) in the framework of a general linear model is developed considering the temporal and spatial characteristics of HD-DOT data. The statistical analysis utilizes a random field noise model that incorporates estimates of the local temporal and spatial correlations of the GLM residuals. The multiple-comparison problem is addressed using a cluster analysis based on non-stationary Gaussian random field theory. These analysis tools provide access to a wide range of experimental designs necessary for the study of the complex brain functions. In addition, they provide a foundation for understanding and interpreting HD-DOT results with quantitative estimates for the statistical significance of detected activation foci.
高密度漫射光学断层成像(HD-DOT)是一种具有中等空间分辨率和定位精度的非侵入性神经影像学方法。由于便携性和可穿戴性的优势,HD-DOT 有可能用于功能磁共振成像(fMRI)不适宜的人群,如住院患者和幼儿。然而,尽管事件相关刺激设计、广义线性模型(GLM)分析和成像统计在 fMRI 中是标准化和常规的,但这些工具在 HD-DOT 中尚未得到普遍应用。在本文中,我们适应和优化了 fMRI 分析的基本要素,将其应用于 HD-DOT。我们展示了在混合多刺激事件相关 HD-DOT 数据中使用事件相关协议和 GLM 去卷积分析。在广义线性模型的框架中开发了统计参数映射(SPM),考虑了 HD-DOT 数据的时间和空间特征。统计分析利用了随机域噪声模型,该模型包含了 GLM 残差的局部时间和空间相关性的估计。使用基于非平稳高斯随机场理论的聚类分析来解决多重比较问题。这些分析工具提供了广泛的实验设计的访问权限,这些设计对于研究复杂的大脑功能是必要的。此外,它们为理解和解释 HD-DOT 结果提供了基础,这些结果提供了检测到的激活焦点的统计显著性的定量估计。