Suppr超能文献

用于预测中国上海戊型肝炎发病率的联合数学模型的开发。

The development of a combined mathematical model to forecast the incidence of hepatitis E in Shanghai, China.

作者信息

Ren Hong, Li Jian, Yuan Zheng-An, Hu Jia-Yu, Yu Yan, Lu Yi-Han

机构信息

The Key Laboratory of Public Health Safety of Minister of Education - Department of Epidemiology, Fudan University School of Public Health, Building 8 Room 441, 138 Yi Xue Yuan Road, Shanghai 200032, China.

出版信息

BMC Infect Dis. 2013 Sep 8;13:421. doi: 10.1186/1471-2334-13-421.

Abstract

BACKGROUND

Sporadic hepatitis E has become an important public health concern in China. Accurate forecasting of the incidence of hepatitis E is needed to better plan future medical needs. Few mathematical models can be used because hepatitis E morbidity data has both linear and nonlinear patterns. We developed a combined mathematical model using an autoregressive integrated moving average model (ARIMA) and a back propagation neural network (BPNN) to forecast the incidence of hepatitis E.

METHODS

The morbidity data of hepatitis E in Shanghai from 2000 to 2012 were retrieved from the China Information System for Disease Control and Prevention. The ARIMA-BPNN combined model was trained with 144 months of morbidity data from January 2000 to December 2011, validated with 12 months of data January 2012 to December 2012, and then employed to forecast hepatitis E incidence January 2013 to December 2013 in Shanghai. Residual analysis, Root Mean Square Error (RMSE), normalized Bayesian Information Criterion (BIC), and stationary R square methods were used to compare the goodness-of-fit among ARIMA models. The Bayesian regularization back-propagation algorithm was used to train the network. The mean error rate (MER) was used to assess the validity of the combined model.

RESULTS

A total of 7,489 hepatitis E cases was reported in Shanghai from 2000 to 2012. Goodness-of-fit (stationary R2=0.531, BIC= -4.768, Ljung-Box Q statistics=15.59, P=0.482) and parameter estimates were used to determine the best-fitting model as ARIMA (0,1,1)×(0,1,1)12. Predicted morbidity values in 2012 from best-fitting ARIMA model and actual morbidity data from 2000 to 2011 were used to further construct the combined model. The MER of the ARIMA model and the ARIMA-BPNN combined model were 0.250 and 0.176, respectively. The forecasted incidence of hepatitis E in 2013 was 0.095 to 0.372 per 100,000 population. There was a seasonal variation with a peak during January-March and a nadir during August-October.

CONCLUSIONS

Time series analysis suggested a seasonal pattern of hepatitis E morbidity in Shanghai, China. An ARIMA-BPNN combined model was used to fit the linear and nonlinear patterns of time series data, and accurately forecast hepatitis E infections.

摘要

背景

散发性戊型肝炎已成为中国一个重要的公共卫生问题。为了更好地规划未来的医疗需求,需要准确预测戊型肝炎的发病率。由于戊型肝炎发病数据具有线性和非线性模式,因此很少有数学模型可以使用。我们开发了一种结合自回归积分移动平均模型(ARIMA)和反向传播神经网络(BPNN)的组合数学模型来预测戊型肝炎的发病率。

方法

从中国疾病预防控制信息系统中检索了2000年至2012年上海戊型肝炎的发病数据。使用2000年1月至2011年12月的144个月发病数据对ARIMA-BPNN组合模型进行训练,用2012年1月至12月的12个月数据进行验证,然后用于预测2013年1月至12月上海戊型肝炎发病率。采用残差分析、均方根误差(RMSE)、归一化贝叶斯信息准则(BIC)和平稳R平方方法比较ARIMA模型之间的拟合优度。采用贝叶斯正则化反向传播算法训练网络。用平均错误率(MER)评估组合模型的有效性。

结果

2000年至2012年上海共报告7489例戊型肝炎病例。拟合优度(平稳R2 = 0.531,BIC = -4.768,Ljung-Box Q统计量 = 15.59,P = 0.482)和参数估计用于确定最佳拟合模型为ARIMA(0,1,1)×(0,1,1)12。用最佳拟合ARIMA模型预测的2012年发病率值和2000年至2011年的实际发病数据进一步构建组合模型。ARIMA模型和ARIMA-BPNN组合模型的MER分别为0.250和0.176。2013年戊型肝炎预测发病率为每10万人0.095至0.372。存在季节性变化,1月至3月为高峰,8月至10月为低谷。

结论

时间序列分析表明中国上海戊型肝炎发病呈季节性模式。ARIMA-BPNN组合模型用于拟合时间序列数据的线性和非线性模式,并准确预测戊型肝炎感染情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d453/3847129/29dabe31e6ef/1471-2334-13-421-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验