Kaul M, Surti S, Karp J S
Department of Physics, University of Pennsylvania, PA, 19104.
IEEE Trans Nucl Sci. 2013 Feb 1;60(1):44-52. doi: 10.1109/TNS.2013.2240315.
Positron emission tomography (PET) detectors based on continuous scintillation crystals can achieve very good performance and have a number of practical advantages compared to detectors based on a pixelated array of crystals. Our goal is to develop a thick continuous detector with high energy and spatial resolution, along with high γ-photon capture efficiency. We examine the performance of two crystal blocks: a 46 × 46 × 14 mm and a 48 × 48 × 25 mm block of LYSO (Lutetium Yttrium Orthosilicate). Using Maximum Likelihood (ML) positioning based upon the light response function (LRF) in the 14 mm thick crystal, we measure a spatial resolution of 3 mm in the central region of the crystal with degradation near the edges due to reflections off the crystal sides. We also show that we can match the spatial resolution achieved using a 14 mm thick crystal by using a 25 mm thick crystal with slots cut into the gamma entrance surface to narrow the LRF. We also find that we can improve the spatial resolution performance near the detector edges by reducing the reflectivity of the crystal sides, albeit with some loss in energy resolution.
基于连续闪烁晶体的正电子发射断层扫描(PET)探测器能够实现非常好的性能,并且与基于像素化晶体阵列的探测器相比具有许多实际优势。我们的目标是开发一种具有高能量和空间分辨率以及高γ光子捕获效率的厚连续探测器。我们研究了两个晶体块的性能:一个尺寸为46×46×14毫米的和一个48×48×25毫米的硅酸镥钇(LYSO)晶体块。利用基于14毫米厚晶体中光响应函数(LRF)的最大似然(ML)定位方法,我们在晶体中心区域测量到空间分辨率为3毫米,由于晶体侧面的反射,在边缘附近分辨率有所下降。我们还表明,通过在25毫米厚的晶体的γ射线入射表面切割狭缝以缩小光响应函数,我们可以达到与使用14毫米厚晶体时相同的空间分辨率。我们还发现,通过降低晶体侧面的反射率,我们可以提高探测器边缘附近的空间分辨率性能,尽管能量分辨率会有一些损失。