Suppr超能文献

石墨烯基质对成骨细胞黏附和增殖的影响。

The effect of graphene substrate on osteoblast cell adhesion and proliferation.

作者信息

Aryaei Ashkan, Jayatissa Ahalapitiya H, Jayasuriya Ambalangodage C

机构信息

Department of Mechanical Engineering, University of Toledo, Toledo, Ohio, 43606.

出版信息

J Biomed Mater Res A. 2014 Sep;102(9):3282-90. doi: 10.1002/jbm.a.34993. Epub 2013 Nov 1.

Abstract

Understanding the effect of graphene substrate on graphene-cell interaction is important for considering graphene as a potential candidate for biomedical applications. In this article, biocompatibility of few layers of graphene film transferred to different substrates was evaluated using osteoblasts. The substrates were oxidized silicon wafer (SiO2/Si stack), soda lime glass, and stainless steel. Chemical vapor deposition method was employed to synthesize graphene on copper substrate using methane and hydrogen as precursors. The quality and the thickness of graphene films on different substrates were estimated by Raman spectra, whereas the thickness of graphene film was confirmed by reflectance and transmittance spectroscopy. The study was also focused on cell attachment and morphology at two time points. The results show that graphene does not have any toxic effect on osteoblasts. The cell adhesion improves with graphene coated substrate than the substrate alone. It seems that graphene substrate properties play a dominant role in cell adhesion. The result of this study suggests that a layer of graphene on bone implants will be beneficial for osteoblast attachment and proliferation.

摘要

了解石墨烯基底对石墨烯与细胞相互作用的影响对于将石墨烯视为生物医学应用的潜在候选材料至关重要。在本文中,使用成骨细胞评估了转移到不同基底上的几层石墨烯薄膜的生物相容性。基底为氧化硅晶片(SiO2/Si叠层)、钠钙玻璃和不锈钢。采用化学气相沉积法,以甲烷和氢气为前驱体在铜基底上合成石墨烯。通过拉曼光谱估计不同基底上石墨烯薄膜的质量和厚度,而通过反射率和透射率光谱确认石墨烯薄膜的厚度。该研究还聚焦于两个时间点的细胞附着和形态。结果表明,石墨烯对成骨细胞没有任何毒性作用。与单独的基底相比,涂覆有石墨烯的基底上的细胞粘附有所改善。似乎石墨烯基底特性在细胞粘附中起主导作用。本研究结果表明,骨植入物上的一层石墨烯将有利于成骨细胞的附着和增殖。

相似文献

1
The effect of graphene substrate on osteoblast cell adhesion and proliferation.
J Biomed Mater Res A. 2014 Sep;102(9):3282-90. doi: 10.1002/jbm.a.34993. Epub 2013 Nov 1.
2
Biomineralization of osteoblasts on DLC coated surfaces for bone implants.
Biointerphases. 2018 May 22;13(4):041002. doi: 10.1116/1.5007805.
4
5
Osteoblast interaction with DLC-coated Si substrates.
Acta Biomater. 2008 Sep;4(5):1369-81. doi: 10.1016/j.actbio.2008.04.011. Epub 2008 Apr 29.
7
8
Substrate effect modulates adhesion and proliferation of fibroblast on graphene layer.
Colloids Surf B Biointerfaces. 2016 Oct 1;146:785-93. doi: 10.1016/j.colsurfb.2016.07.008. Epub 2016 Jul 5.
9
Suspended graphene oxide nanoparticle for accelerated multilayer osteoblast attachment.
J Biomed Mater Res A. 2018 Jan;106(1):293-303. doi: 10.1002/jbm.a.36231. Epub 2017 Nov 16.
10
Functionalized graphene oxide coating on Ti6Al4V alloy for improved biocompatibility and corrosion resistance.
Mater Sci Eng C Mater Biol Appl. 2019 Jan 1;94:920-928. doi: 10.1016/j.msec.2018.10.046. Epub 2018 Oct 11.

引用本文的文献

2
Extracellular osmolarity regulates osteoblast migration through the TRPV4-Rho/ROCK signaling.
Commun Biol. 2025 Mar 29;8(1):515. doi: 10.1038/s42003-025-07946-8.
4
5
Graphene: A Multifaceted Carbon-Based Material for Bone Tissue Engineering Applications.
ACS Omega. 2023 Dec 21;9(1):67-80. doi: 10.1021/acsomega.3c07062. eCollection 2024 Jan 9.
7
Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review.
Int J Nanomedicine. 2023 Oct 27;18:6153-6183. doi: 10.2147/IJN.S436867. eCollection 2023.
8
Application of Graphene Oxide in Oral Surgery: A Systematic Review.
Materials (Basel). 2023 Sep 20;16(18):6293. doi: 10.3390/ma16186293.
9
PCL/Graphene Scaffolds for the Osteogenesis Process.
Bioengineering (Basel). 2023 Feb 28;10(3):305. doi: 10.3390/bioengineering10030305.

本文引用的文献

1
Biocompatibility of Graphene Oxide.
Nanoscale Res Lett. 2011 Dec;6(1):8. doi: 10.1007/s11671-010-9751-6. Epub 2010 Aug 21.
3
Graphene and its derivatives for cell biotechnology.
Analyst. 2013 Jan 7;138(1):72-86. doi: 10.1039/c2an35744e. Epub 2012 Nov 1.
4
Behavior and toxicity of graphene and its functionalized derivatives in biological systems.
Small. 2013 May 27;9(9-10):1492-503. doi: 10.1002/smll.201201417. Epub 2012 Sep 17.
5
Influence of the fetal bovine serum proteins on the growth of human osteoblast cells on graphene.
J Biomed Mater Res A. 2012 Nov;100(11):3001-7. doi: 10.1002/jbm.a.34231. Epub 2012 Jun 15.
6
Biomedical applications of graphene.
Theranostics. 2012;2(3):283-94. doi: 10.7150/thno.3642. Epub 2012 Mar 5.
7
Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool.
Bioconjug Chem. 2011 Dec 21;22(12):2558-67. doi: 10.1021/bc200397j. Epub 2011 Nov 16.
9
Transfer of CVD-grown monolayer graphene onto arbitrary substrates.
ACS Nano. 2011 Sep 27;5(9):6916-24. doi: 10.1021/nn201207c. Epub 2011 Sep 6.
10
Enhanced differentiation of human neural stem cells into neurons on graphene.
Adv Mater. 2011 Sep 22;23(36):H263-7. doi: 10.1002/adma.201101503. Epub 2011 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验