Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America ; Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America.
PLoS One. 2013 Nov 13;8(11):e78822. doi: 10.1371/journal.pone.0078822. eCollection 2013.
Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome), yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure), and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000), and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301). We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway). This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective antibiotic pressure in the human host, and that cryptic gut microbes are an important resistance reservoir. The observed transferability of gut-associated resistance genes to a gram-negative (E. coli) host also suggests that the potential for gut-associated resistomes to threaten human health by mediating antibiotic resistance in pathogens warrants further investigation.
抗生素耐药性的出现威胁着人类健康。肠道微生物是耐药基因(耐药组)在流行病学上的一个重要储存库,但先前的研究表明,肠道相关耐药组的真正多样性被低估了。为了深入描述儿科肠道相关耐药组,我们使用来自 22 名健康婴儿和儿童(大多数没有最近使用抗生素)的粪便 DNA 在大肠杆菌宿主中创建了宏基因组重组文库,并对来自 8 个药物类别的 18 种抗生素进行了功能选择。对赋予耐药性的 DNA 片段进行了测序(Illumina HiSeq 2000),并使用 PARFuMS 计算管道进行了组装和注释。在婴儿和儿童的粪便中发现了 18 种抗生素中的 14 种耐药性。回收的基因包括氯霉素乙酰转移酶、耐药二氢叶酸还原酶、rRNA 甲基转移酶、转录调节剂、多药外排泵以及β-内酰胺酶、氨基糖苷修饰酶和四环素耐药蛋白的每一大类。许多赋予耐药性的序列是可移动的;有些与任何已知的生物体的同源性很低,这强调了隐匿生物体可能是重要的耐药性储存库。我们通过功能证实了三个新的耐药基因,包括一个赋予氨基糖苷类耐药性的 16S rRNA 甲基酶,以及两个与双歧杆菌 MFS 转运蛋白(B. longum s. longum JDM301)几乎相同的四环素耐药蛋白。我们提供了第一个据我们所知的由预测的 Nudix 水解酶(叶酸合成途径的一部分)赋予的叶酸合成抑制剂耐药性的报告。这项对肠道相关耐药组的功能宏基因组调查是迄今为止规模最大的一次,表明健康儿童的粪便耐药组比以前怀疑的要多样化得多,即使在人类宿主中没有最近的选择性抗生素压力,临床上相关的耐药基因也存在,并且隐匿的肠道微生物是一个重要的耐药性储存库。观察到的肠道相关耐药基因向革兰氏阴性(大肠杆菌)宿主的可转移性也表明,肠道相关耐药组通过介导病原体的抗生素耐药性来威胁人类健康的潜力值得进一步研究。