Lee Karin L, Uhde-Holzem Kerstin, Fischer Rainer, Commandeur Ulrich, Steinmetz Nicole F
Departments of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
Methods Mol Biol. 2014;1108:3-21. doi: 10.1007/978-1-62703-751-8_1.
Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).
在此,我们报告了对马铃薯X病毒(PVX)进行基因工程改造和化学修饰,以展示各种肽、蛋白质、荧光染料或其他化学修饰剂。文中描述了三种不同的基因工程方法,通过这些方法,不仅在包含口蹄疫病毒(FMDV)2A序列或柔性甘氨酸-丝氨酸接头时,而且在肽直接与PVX衣壳蛋白融合时,肽都能成功表达。当展示较大的蛋白质或不利的肽序列时,通过FMDV 2A序列进行部分融合更为可取。当这些PVX嵌合体保留组装成病毒颗粒的能力并因此能够系统性感染植物时,它们可用于接种易感植物,以分离出足够数量的病毒颗粒用于后续化学修饰。对于展示非生物配体(如荧光团、聚合物和小药物化合物),需要进行化学修饰。我们介绍了三种化学生物偶联方法。对于将小化学修饰剂直接偶联到溶剂暴露的赖氨酸上,可应用N-羟基琥珀酰亚胺化学方法。生物正交反应,如铜催化的叠氮化物-炔烃环加成或腙连接,是实现更高效偶联的替代方法(例如,当处理高分子量或不溶性配体时)。此外,腙连接为引入可pH裂解的货物(如治疗性分子)提供了一条有吸引力的途径。