Suppr超能文献

一种用于大规模无监督识别新型药物-药物相互作用的网络推理方法。

A network inference method for large-scale unsupervised identification of novel drug-drug interactions.

机构信息

Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain ; Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.

出版信息

PLoS Comput Biol. 2013;9(12):e1003374. doi: 10.1371/journal.pcbi.1003374. Epub 2013 Dec 5.

Abstract

Characterizing interactions between drugs is important to avoid potentially harmful combinations, to reduce off-target effects of treatments and to fight antibiotic resistant pathogens, among others. Here we present a network inference algorithm to predict uncharacterized drug-drug interactions. Our algorithm takes, as its only input, sets of previously reported interactions, and does not require any pharmacological or biochemical information about the drugs, their targets or their mechanisms of action. Because the models we use are abstract, our approach can deal with adverse interactions, synergistic/antagonistic/suppressing interactions, or any other type of drug interaction. We show that our method is able to accurately predict interactions, both in exhaustive pairwise interaction data between small sets of drugs, and in large-scale databases. We also demonstrate that our algorithm can be used efficiently to discover interactions of new drugs as part of the drug discovery process.

摘要

研究药物之间的相互作用很重要,这可以避免潜在的有害组合,减少治疗的脱靶效应,对抗抗生素耐药性病原体等。在这里,我们提出了一种网络推断算法来预测未被描述的药物-药物相互作用。我们的算法仅将之前报道的相互作用集作为其唯一输入,而不需要有关药物、其靶标或作用机制的任何药理学或生物化学信息。由于我们使用的模型是抽象的,因此我们的方法可以处理不良相互作用、协同/拮抗/抑制相互作用或任何其他类型的药物相互作用。我们表明,我们的方法能够准确地预测相互作用,无论是在小药物组之间的详尽成对相互作用数据中,还是在大型数据库中。我们还证明,我们的算法可以有效地用于发现新药的相互作用,作为药物发现过程的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c71/3854677/311526b057be/pcbi.1003374.g001.jpg

相似文献

1
A network inference method for large-scale unsupervised identification of novel drug-drug interactions.
PLoS Comput Biol. 2013;9(12):e1003374. doi: 10.1371/journal.pcbi.1003374. Epub 2013 Dec 5.
2
3
Deep-Learning-Based Drug-Target Interaction Prediction.
J Proteome Res. 2017 Apr 7;16(4):1401-1409. doi: 10.1021/acs.jproteome.6b00618. Epub 2017 Mar 13.
4
Synergistic and antagonistic drug combinations depend on network topology.
PLoS One. 2014 Apr 8;9(4):e93960. doi: 10.1371/journal.pone.0093960. eCollection 2014.
5
Data-driven prediction of adverse drug reactions induced by drug-drug interactions.
BMC Pharmacol Toxicol. 2017 Jun 8;18(1):44. doi: 10.1186/s40360-017-0153-6.
6
Global optimization-based inference of chemogenomic features from drug-target interactions.
Bioinformatics. 2015 Aug 1;31(15):2523-9. doi: 10.1093/bioinformatics/btv181. Epub 2015 Mar 29.
7
Large-scale exploration and analysis of drug combinations.
Bioinformatics. 2015 Jun 15;31(12):2007-16. doi: 10.1093/bioinformatics/btv080. Epub 2015 Feb 8.
8
Large-scale identification of potential drug targets based on the topological features of human protein-protein interaction network.
Anal Chim Acta. 2015 Apr 29;871:18-27. doi: 10.1016/j.aca.2015.02.032. Epub 2015 Feb 12.
10
Prediction of chemical-protein interactions network with weighted network-based inference method.
PLoS One. 2012;7(7):e41064. doi: 10.1371/journal.pone.0041064. Epub 2012 Jul 16.

引用本文的文献

1
Hyperedge prediction and the statistical mechanisms of higher-order and lower-order interactions in complex networks.
Proc Natl Acad Sci U S A. 2023 Dec 12;120(50):e2303887120. doi: 10.1073/pnas.2303887120. Epub 2023 Dec 7.
2
Drug-Drug Interactions Prediction Using Fingerprint Only.
Comput Math Methods Med. 2022 May 9;2022:7818480. doi: 10.1155/2022/7818480. eCollection 2022.
3
Machine learning to predict metabolic drug interactions related to cytochrome P450 isozymes.
J Cheminform. 2022 Apr 15;14(1):23. doi: 10.1186/s13321-022-00602-x.
4
One model to rule them all in network science?
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25195-25197. doi: 10.1073/pnas.2017807117. Epub 2020 Sep 28.
5
An Informatics-based Approach to Identify Key Pharmacological Components in Drug-Drug Interactions.
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:142-151. eCollection 2020.
7
Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning.
PLoS One. 2018 May 8;13(5):e0196865. doi: 10.1371/journal.pone.0196865. eCollection 2018.
8
Prediction of drug cocktail effects when the number of measurements is limited.
PLoS Biol. 2017 Oct 26;15(10):e2002518. doi: 10.1371/journal.pbio.2002518. eCollection 2017 Oct.
10
A statistical model for brain networks inferred from large-scale electrophysiological signals.
J R Soc Interface. 2017 Mar;14(128). doi: 10.1098/rsif.2016.0940.

本文引用的文献

1
Predicting human preferences using the block structure of complex social networks.
PLoS One. 2012;7(9):e44620. doi: 10.1371/journal.pone.0044620. Epub 2012 Sep 11.
2
Mechanism-independent method for predicting response to multidrug combinations in bacteria.
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12254-9. doi: 10.1073/pnas.1201281109. Epub 2012 Jul 5.
3
Data-driven prediction of drug effects and interactions.
Sci Transl Med. 2012 Mar 14;4(125):125ra31. doi: 10.1126/scitranslmed.3003377.
4
A co-module approach for elucidating drug-disease associations and revealing their molecular basis.
Bioinformatics. 2012 Apr 1;28(7):955-61. doi: 10.1093/bioinformatics/bts057. Epub 2012 Jan 28.
5
Prediction of drug combinations by integrating molecular and pharmacological data.
PLoS Comput Biol. 2011 Dec;7(12):e1002323. doi: 10.1371/journal.pcbi.1002323. Epub 2011 Dec 29.
6
Systems biology analysis of protein-drug interactions.
Proteomics Clin Appl. 2012 Jan;6(1-2):102-16. doi: 10.1002/prca.201100077. Epub 2011 Dec 27.
7
Predicting adverse drug events using pharmacological network models.
Sci Transl Med. 2011 Dec 21;3(114):114ra127. doi: 10.1126/scitranslmed.3002774.
8
Systematic exploration of synergistic drug pairs.
Mol Syst Biol. 2011 Nov 8;7:544. doi: 10.1038/msb.2011.71.
9
Network-based analysis and characterization of adverse drug-drug interactions.
J Chem Inf Model. 2011 Nov 28;51(11):2977-85. doi: 10.1021/ci200367w. Epub 2011 Oct 11.
10
Predicting selective drug targets in cancer through metabolic networks.
Mol Syst Biol. 2011 Jun 21;7:501. doi: 10.1038/msb.2011.35.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验