Suppr超能文献

一种用于大规模无监督识别新型药物-药物相互作用的网络推理方法。

A network inference method for large-scale unsupervised identification of novel drug-drug interactions.

机构信息

Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain ; Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.

出版信息

PLoS Comput Biol. 2013;9(12):e1003374. doi: 10.1371/journal.pcbi.1003374. Epub 2013 Dec 5.

Abstract

Characterizing interactions between drugs is important to avoid potentially harmful combinations, to reduce off-target effects of treatments and to fight antibiotic resistant pathogens, among others. Here we present a network inference algorithm to predict uncharacterized drug-drug interactions. Our algorithm takes, as its only input, sets of previously reported interactions, and does not require any pharmacological or biochemical information about the drugs, their targets or their mechanisms of action. Because the models we use are abstract, our approach can deal with adverse interactions, synergistic/antagonistic/suppressing interactions, or any other type of drug interaction. We show that our method is able to accurately predict interactions, both in exhaustive pairwise interaction data between small sets of drugs, and in large-scale databases. We also demonstrate that our algorithm can be used efficiently to discover interactions of new drugs as part of the drug discovery process.

摘要

研究药物之间的相互作用很重要,这可以避免潜在的有害组合,减少治疗的脱靶效应,对抗抗生素耐药性病原体等。在这里,我们提出了一种网络推断算法来预测未被描述的药物-药物相互作用。我们的算法仅将之前报道的相互作用集作为其唯一输入,而不需要有关药物、其靶标或作用机制的任何药理学或生物化学信息。由于我们使用的模型是抽象的,因此我们的方法可以处理不良相互作用、协同/拮抗/抑制相互作用或任何其他类型的药物相互作用。我们表明,我们的方法能够准确地预测相互作用,无论是在小药物组之间的详尽成对相互作用数据中,还是在大型数据库中。我们还证明,我们的算法可以有效地用于发现新药的相互作用,作为药物发现过程的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c71/3854677/311526b057be/pcbi.1003374.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验