Suppr超能文献

基于模型的方法在海马和新皮层癫痫中的发作预测。

Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach.

机构信息

University of Minnesota, Minneapolis, MN 55455, USA; University of Picardie-Jules Verne, France.

University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Clin Neurophysiol. 2014 May;125(5):930-40. doi: 10.1016/j.clinph.2013.10.051. Epub 2013 Nov 28.

Abstract

OBJECTIVES

The aim of this study is to develop a model based seizure prediction method.

METHODS

A neural mass model was used to simulate the macro-scale dynamics of intracranial EEG data. The model was composed of pyramidal cells, excitatory and inhibitory interneurons described through state equations. Twelve model's parameters were estimated by fitting the model to the power spectral density of intracranial EEG signals and then integrated based on information obtained by investigating changes in the parameters prior to seizures. Twenty-one patients with medically intractable hippocampal and neocortical focal epilepsy were studied.

RESULTS

Tuned to obtain maximum sensitivity, an average sensitivity of 87.07% and 92.6% with an average false prediction rate of 0.2 and 0.15/h were achieved using maximum seizure occurrence periods of 30 and 50 min and a minimum seizure prediction horizon of 10s, respectively. Under maximum specificity conditions, the system sensitivity decreased to 82.9% and 90.05% and the false prediction rates were reduced to 0.16 and 0.12/h using maximum seizure occurrence periods of 30 and 50 min, respectively.

CONCLUSIONS

The spatio-temporal changes in the parameters demonstrated patient-specific preictal signatures that could be used for seizure prediction.

SIGNIFICANCE

The present findings suggest that the model-based approach may aid prediction of seizures.

摘要

目的

本研究旨在开发一种基于模型的癫痫发作预测方法。

方法

使用神经质量模型来模拟颅内 EEG 数据的宏观动力学。该模型由通过状态方程描述的锥体神经元、兴奋性和抑制性中间神经元组成。通过拟合模型到颅内 EEG 信号的功率谱密度来估计模型的 12 个参数,然后根据在癫痫发作前参数变化的信息进行整合。研究了 21 例药物难治性海马和新皮质局灶性癫痫患者。

结果

在最大敏感性条件下,使用最大癫痫发作期 30 和 50 分钟以及最小癫痫预测潜伏期 10 秒,分别获得平均敏感性 87.07%和 92.6%,平均假预测率为 0.2 和 0.15/h。在最大特异性条件下,系统敏感性降低至 82.9%和 90.05%,最大癫痫发作期 30 和 50 分钟时的假预测率分别降低至 0.16 和 0.12/h。

结论

参数的时空变化显示出特定于患者的发作前特征,可用于癫痫发作预测。

意义

本研究结果表明,基于模型的方法可能有助于预测癫痫发作。

相似文献

1
Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach.
Clin Neurophysiol. 2014 May;125(5):930-40. doi: 10.1016/j.clinph.2013.10.051. Epub 2013 Nov 28.
2
Seizure prediction in patients with focal hippocampal epilepsy.
Clin Neurophysiol. 2017 Jul;128(7):1299-1307. doi: 10.1016/j.clinph.2017.04.026. Epub 2017 May 12.
3
A rule-based seizure prediction method for focal neocortical epilepsy.
Clin Neurophysiol. 2012 Jun;123(6):1111-22. doi: 10.1016/j.clinph.2012.01.014. Epub 2012 Feb 22.
4
Epileptic Seizure Prediction Using Diffusion Distance and Bayesian Linear Discriminate Analysis on Intracranial EEG.
Int J Neural Syst. 2018 Feb;28(1):1750043. doi: 10.1142/S0129065717500435. Epub 2017 Aug 16.
5
Spatio-temporal dynamics prior to neocortical seizures: amplitude versus phase couplings.
IEEE Trans Biomed Eng. 2003 May;50(5):571-83. doi: 10.1109/TBME.2003.810696.
6
Neural mass modeling for predicting seizures.
Clin Neurophysiol. 2014 May;125(5):867-8. doi: 10.1016/j.clinph.2013.11.013. Epub 2013 Nov 28.
8
Dynamic preictal relations in FCD type II: potential for early seizure detection in focal epilepsy.
Epilepsy Res. 2015 Feb;110:26-31. doi: 10.1016/j.eplepsyres.2014.11.016. Epub 2014 Nov 24.
9
Human focal seizures are characterized by populations of fixed duration and interval.
Epilepsia. 2016 Mar;57(3):359-68. doi: 10.1111/epi.13291. Epub 2015 Dec 31.
10
Seizure onset predicts its type.
Epilepsia. 2018 Mar;59(3):650-660. doi: 10.1111/epi.13997. Epub 2018 Jan 11.

引用本文的文献

2
Development of Mechanistic Neural Mass (mNM) Models that Link Physiology to Mean-Field Dynamics.
Front Netw Physiol. 2022 Sep;2. doi: 10.3389/fnetp.2022.911090. Epub 2022 Sep 28.
3
[Research progress of epileptic seizure predictions based on electroencephalogram signals].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Dec 25;38(6):1193-1202. doi: 10.7507/1001-5515.202105052.
4
Prediction of epileptic seizures based on multivariate multiscale modified-distribution entropy.
PeerJ Comput Sci. 2021 Oct 15;7:e744. doi: 10.7717/peerj-cs.744. eCollection 2021.
5
Predicting epileptic seizures using nonnegative matrix factorization.
PLoS One. 2020 Feb 5;15(2):e0228025. doi: 10.1371/journal.pone.0228025. eCollection 2020.
6
A New Neural Mass Model Driven Method and Its Application in Early Epileptic Seizure Detection.
IEEE Trans Biomed Eng. 2020 Aug;67(8):2194-2205. doi: 10.1109/TBME.2019.2957392. Epub 2019 Dec 3.
7
Seizure pathways: A model-based investigation.
PLoS Comput Biol. 2018 Oct 11;14(10):e1006403. doi: 10.1371/journal.pcbi.1006403. eCollection 2018 Oct.
8
Epileptic Seizure Prediction Based on Permutation Entropy.
Front Comput Neurosci. 2018 Jul 19;12:55. doi: 10.3389/fncom.2018.00055. eCollection 2018.
9
Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals.
Comput Intell Neurosci. 2017;2017:1240323. doi: 10.1155/2017/1240323. Epub 2017 Oct 31.
10
Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics.
PLoS One. 2017 Jul 20;12(7):e0181513. doi: 10.1371/journal.pone.0181513. eCollection 2017.

本文引用的文献

1
A rule-based seizure prediction method for focal neocortical epilepsy.
Clin Neurophysiol. 2012 Jun;123(6):1111-22. doi: 10.1016/j.clinph.2012.01.014. Epub 2012 Feb 22.
2
A data-driven framework for neural field modeling.
Neuroimage. 2011 Jun 1;56(3):1043-58. doi: 10.1016/j.neuroimage.2011.02.027. Epub 2011 Feb 15.
3
Intermittent spike-wave dynamics in a heterogeneous, spatially extended neural mass model.
Neuroimage. 2011 Apr 1;55(3):920-32. doi: 10.1016/j.neuroimage.2010.12.074. Epub 2010 Dec 31.
4
Joining the benefits: combining epileptic seizure prediction methods.
Epilepsia. 2010 Aug;51(8):1598-606. doi: 10.1111/j.1528-1167.2009.02497.x. Epub 2010 Jan 7.
5
Dynamic causal modelling: a critical review of the biophysical and statistical foundations.
Neuroimage. 2011 Sep 15;58(2):312-22. doi: 10.1016/j.neuroimage.2009.11.062. Epub 2009 Dec 1.
6
Classification of patterns of EEG synchronization for seizure prediction.
Clin Neurophysiol. 2009 Nov;120(11):1927-1940. doi: 10.1016/j.clinph.2009.09.002. Epub 2009 Oct 17.
7
Bayesian estimation of synaptic physiology from the spectral responses of neural masses.
Neuroimage. 2008 Aug 1;42(1):272-84. doi: 10.1016/j.neuroimage.2008.01.025. Epub 2008 Feb 1.
9
A neural mass model of spectral responses in electrophysiology.
Neuroimage. 2007 Sep 1;37(3):706-20. doi: 10.1016/j.neuroimage.2007.05.032. Epub 2007 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验