Suppr超能文献

基于模型的方法在海马和新皮层癫痫中的发作预测。

Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach.

机构信息

University of Minnesota, Minneapolis, MN 55455, USA; University of Picardie-Jules Verne, France.

University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Clin Neurophysiol. 2014 May;125(5):930-40. doi: 10.1016/j.clinph.2013.10.051. Epub 2013 Nov 28.

Abstract

OBJECTIVES

The aim of this study is to develop a model based seizure prediction method.

METHODS

A neural mass model was used to simulate the macro-scale dynamics of intracranial EEG data. The model was composed of pyramidal cells, excitatory and inhibitory interneurons described through state equations. Twelve model's parameters were estimated by fitting the model to the power spectral density of intracranial EEG signals and then integrated based on information obtained by investigating changes in the parameters prior to seizures. Twenty-one patients with medically intractable hippocampal and neocortical focal epilepsy were studied.

RESULTS

Tuned to obtain maximum sensitivity, an average sensitivity of 87.07% and 92.6% with an average false prediction rate of 0.2 and 0.15/h were achieved using maximum seizure occurrence periods of 30 and 50 min and a minimum seizure prediction horizon of 10s, respectively. Under maximum specificity conditions, the system sensitivity decreased to 82.9% and 90.05% and the false prediction rates were reduced to 0.16 and 0.12/h using maximum seizure occurrence periods of 30 and 50 min, respectively.

CONCLUSIONS

The spatio-temporal changes in the parameters demonstrated patient-specific preictal signatures that could be used for seizure prediction.

SIGNIFICANCE

The present findings suggest that the model-based approach may aid prediction of seizures.

摘要

目的

本研究旨在开发一种基于模型的癫痫发作预测方法。

方法

使用神经质量模型来模拟颅内 EEG 数据的宏观动力学。该模型由通过状态方程描述的锥体神经元、兴奋性和抑制性中间神经元组成。通过拟合模型到颅内 EEG 信号的功率谱密度来估计模型的 12 个参数,然后根据在癫痫发作前参数变化的信息进行整合。研究了 21 例药物难治性海马和新皮质局灶性癫痫患者。

结果

在最大敏感性条件下,使用最大癫痫发作期 30 和 50 分钟以及最小癫痫预测潜伏期 10 秒,分别获得平均敏感性 87.07%和 92.6%,平均假预测率为 0.2 和 0.15/h。在最大特异性条件下,系统敏感性降低至 82.9%和 90.05%,最大癫痫发作期 30 和 50 分钟时的假预测率分别降低至 0.16 和 0.12/h。

结论

参数的时空变化显示出特定于患者的发作前特征,可用于癫痫发作预测。

意义

本研究结果表明,基于模型的方法可能有助于预测癫痫发作。

相似文献

2
Seizure prediction in patients with focal hippocampal epilepsy.局灶性海马癫痫患者的癫痫发作预测
Clin Neurophysiol. 2017 Jul;128(7):1299-1307. doi: 10.1016/j.clinph.2017.04.026. Epub 2017 May 12.
3
A rule-based seizure prediction method for focal neocortical epilepsy.基于规则的局灶性新皮层癫痫发作预测方法。
Clin Neurophysiol. 2012 Jun;123(6):1111-22. doi: 10.1016/j.clinph.2012.01.014. Epub 2012 Feb 22.
6
Neural mass modeling for predicting seizures.用于预测癫痫发作的神经团建模
Clin Neurophysiol. 2014 May;125(5):867-8. doi: 10.1016/j.clinph.2013.11.013. Epub 2013 Nov 28.
10
Seizure onset predicts its type.发作起始可预测发作类型。
Epilepsia. 2018 Mar;59(3):650-660. doi: 10.1111/epi.13997. Epub 2018 Jan 11.

引用本文的文献

3
[Research progress of epileptic seizure predictions based on electroencephalogram signals].基于脑电图信号的癫痫发作预测研究进展
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Dec 25;38(6):1193-1202. doi: 10.7507/1001-5515.202105052.
5
Predicting epileptic seizures using nonnegative matrix factorization.使用非负矩阵分解预测癫痫发作。
PLoS One. 2020 Feb 5;15(2):e0228025. doi: 10.1371/journal.pone.0228025. eCollection 2020.
7
Seizure pathways: A model-based investigation.发作途径:基于模型的研究。
PLoS Comput Biol. 2018 Oct 11;14(10):e1006403. doi: 10.1371/journal.pcbi.1006403. eCollection 2018 Oct.
8
Epileptic Seizure Prediction Based on Permutation Entropy.基于排列熵的癫痫发作预测
Front Comput Neurosci. 2018 Jul 19;12:55. doi: 10.3389/fncom.2018.00055. eCollection 2018.
9

本文引用的文献

1
A rule-based seizure prediction method for focal neocortical epilepsy.基于规则的局灶性新皮层癫痫发作预测方法。
Clin Neurophysiol. 2012 Jun;123(6):1111-22. doi: 10.1016/j.clinph.2012.01.014. Epub 2012 Feb 22.
2
A data-driven framework for neural field modeling.基于数据驱动的神经场建模框架。
Neuroimage. 2011 Jun 1;56(3):1043-58. doi: 10.1016/j.neuroimage.2011.02.027. Epub 2011 Feb 15.
4
Joining the benefits: combining epileptic seizure prediction methods.联合优势:结合癫痫发作预测方法。
Epilepsia. 2010 Aug;51(8):1598-606. doi: 10.1111/j.1528-1167.2009.02497.x. Epub 2010 Jan 7.
6
Classification of patterns of EEG synchronization for seizure prediction.用于癫痫发作预测的脑电图同步模式分类。
Clin Neurophysiol. 2009 Nov;120(11):1927-1940. doi: 10.1016/j.clinph.2009.09.002. Epub 2009 Oct 17.
9
A neural mass model of spectral responses in electrophysiology.电生理学中频谱响应的神经团模型。
Neuroimage. 2007 Sep 1;37(3):706-20. doi: 10.1016/j.neuroimage.2007.05.032. Epub 2007 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验