文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

复杂技能学习从虚拟赛艇到实际赛艇的迁移。

Transfer of complex skill learning from virtual to real rowing.

作者信息

Rauter Georg, Sigrist Roland, Koch Claudio, Crivelli Francesco, van Raai Mark, Riener Robert, Wolf Peter

机构信息

Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland ; Medical Faculty, University of Zurich, Zurich, Switzerland.

出版信息

PLoS One. 2013 Dec 20;8(12):e82145. doi: 10.1371/journal.pone.0082145. eCollection 2013.


DOI:10.1371/journal.pone.0082145
PMID:24376518
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3869668/
Abstract

Simulators are commonly used to train complex tasks. In particular, simulators are applied to train dangerous tasks, to save costs, and to investigate the impact of different factors on task performance. However, in most cases, the transfer of simulator training to the real task has not been investigated. Without a proof for successful skill transfer, simulators might not be helpful at all or even counter-productive for learning the real task. In this paper, the skill transfer of complex technical aspects trained on a scull rowing simulator to sculling on water was investigated. We assume if a simulator provides high fidelity rendering of the interactions with the environment even without augmented feedback, training on such a realistic simulator would allow similar skill gains as training in the real environment. These learned skills were expected to transfer to the real environment. Two groups of four recreational rowers participated. One group trained on water, the other group trained on a simulator. Within two weeks, both groups performed four training sessions with the same licensed rowing trainer. The development in performance was assessed by quantitative biomechanical performance measures and by a qualitative video evaluation of an independent, blinded trainer. In general, both groups could improve their performance on water. The used biomechanical measures seem to allow only a limited insight into the rowers' development, while the independent trainer could also rate the rowers' overall impression. The simulator quality and naturalism was confirmed by the participants in a questionnaire. In conclusion, realistic simulator training fostered skill gains to a similar extent as training in the real environment and enabled skill transfer to the real environment. In combination with augmented feedback, simulator training can be further exploited to foster motor learning even to a higher extent, which is subject to future work.

摘要

模拟器常用于训练复杂任务。特别是,模拟器被应用于训练危险任务、节省成本以及研究不同因素对任务表现的影响。然而,在大多数情况下,尚未对模拟器训练向实际任务的迁移进行研究。如果没有成功技能迁移的证据,模拟器可能根本没有帮助,甚至对学习实际任务产生适得其反的效果。在本文中,研究了在单人双桨划船模拟器上训练的复杂技术方面向水上单人双桨划船的技能迁移。我们假设,如果一个模拟器即使没有增强反馈也能提供与环境交互的高保真渲染,那么在这样一个逼真的模拟器上进行训练将能获得与在实际环境中训练相似的技能提升。这些学到的技能有望迁移到实际环境中。两组,每组四名休闲划船者参与了实验。一组在水上训练,另一组在模拟器上训练。在两周内,两组都与同一位有执照的划船教练进行了四次训练课程。通过定量生物力学性能指标以及由一名独立的、不知情的教练进行的定性视频评估来评估表现的发展。总体而言,两组在水上的表现都有所提高。所使用的生物力学指标似乎只能对划船者的发展提供有限的洞察,而独立教练也能够对划船者的整体印象进行评分。参与者通过问卷调查确认了模拟器的质量和逼真度。总之,逼真的模拟器训练在促进技能提升方面与在实际环境中训练的程度相似,并能够实现向实际环境的技能迁移。结合增强反馈,模拟器训练可以进一步被利用以更大程度地促进运动学习,这有待未来的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/db81271b1424/pone.0082145.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/6adb58dd7cd3/pone.0082145.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/e3f79a953bca/pone.0082145.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/328df8dfafa3/pone.0082145.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/7edb3e7c9884/pone.0082145.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/a140c65eaca8/pone.0082145.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/cb917697a5dd/pone.0082145.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/2ac8817bca19/pone.0082145.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/b39a32fe23bc/pone.0082145.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/8b01b52d8798/pone.0082145.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/b0ea3bb9c596/pone.0082145.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/8b73e08c042b/pone.0082145.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/2bb868696a25/pone.0082145.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/bc307685356b/pone.0082145.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/83289362f4b2/pone.0082145.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/db81271b1424/pone.0082145.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/6adb58dd7cd3/pone.0082145.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/e3f79a953bca/pone.0082145.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/328df8dfafa3/pone.0082145.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/7edb3e7c9884/pone.0082145.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/a140c65eaca8/pone.0082145.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/cb917697a5dd/pone.0082145.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/2ac8817bca19/pone.0082145.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/b39a32fe23bc/pone.0082145.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/8b01b52d8798/pone.0082145.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/b0ea3bb9c596/pone.0082145.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/8b73e08c042b/pone.0082145.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/2bb868696a25/pone.0082145.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/bc307685356b/pone.0082145.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/83289362f4b2/pone.0082145.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403b/3869668/db81271b1424/pone.0082145.g015.jpg

相似文献

[1]
Transfer of complex skill learning from virtual to real rowing.

PLoS One. 2013-12-20

[2]
The effect of 3D stereopsis and hand-tool alignment on learning effectiveness and skill transfer of a VR-based simulator for dental training.

PLoS One. 2023-10-4

[3]
Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.

J Biomed Inform. 2013-12-28

[4]
Convergent validation and transfer of learning studies of a virtual reality-based pattern cutting simulator.

Surg Endosc. 2017-8-15

[5]
Objective assessment of surgical skill transfer using non-invasive brain imaging.

Surg Endosc. 2018-10-17

[6]
Identification of skills common to renal and iliac endovascular procedures performed on a virtual reality simulator.

Eur J Vasc Endovasc Surg. 2007-5

[7]
The interaction of spatial ability and motor learning in the transfer of training from a simulator to a real task.

Stud Health Technol Inform. 2001

[8]
Virtual Reality Compared with Bench-Top Simulation in the Acquisition of Arthroscopic Skill: A Randomized Controlled Trial.

J Bone Joint Surg Am. 2017-4-5

[9]
Rowing Simulator Modulates Water Density to Foster Motor Learning.

Front Robot AI. 2019-8-21

[10]
Development and validation of a virtual reality simulator: human factors input to interventional radiology training.

Hum Factors. 2011-12

引用本文的文献

[1]
Effectiveness of virtual reality games on the specific sport skills of adolescents.

BMC Sports Sci Med Rehabil. 2025-7-10

[2]
Workout Duration Alters the Importance of Predictive Traits on High-Intensity Functional Training Workout Performance.

Sports (Basel). 2025-5-22

[3]
Perceptual Training in Ice Hockey: Bridging the Eyes-Puck Gap Using Virtual Reality.

Sports Med Open. 2025-4-12

[4]
A Systematic Review and Meta-Analysis of Virtual and Traditional Physical Activity Programs: Effects on Physical, Health, and Cognitive Outcomes.

Healthcare (Basel). 2025-3-24

[5]
Effectiveness of a new basic course incorporating medical trainer simulator for HEMS education in Japan: a pre-post intervention study.

BMC Med Educ. 2025-4-2

[6]
The Effect of Virtual Reality Technology in Table Tennis Teaching: A Multi-Center Controlled Study.

Sensors (Basel). 2024-10-31

[7]
Off the shelf: Investigating transfer of learning using commercially available virtual reality equipment.

PLoS One. 2023

[8]
Virtual reality: a promising instrument to promote sail education.

Front Psychol. 2023-7-26

[9]
A Narrative Review of the Current State of Extended Reality Technology and How it can be Utilised in Sport.

Sports Med. 2022-7

[10]
Rowing Simulator Modulates Water Density to Foster Motor Learning.

Front Robot AI. 2019-8-21

本文引用的文献

[1]
Terminal feedback outperforms concurrent visual, auditory, and haptic feedback in learning a complex rowing-type task.

J Mot Behav. 2013

[2]
Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review.

Psychon Bull Rev. 2013-2

[3]
Skill training in multimodal virtual environments.

Work. 2012

[4]
Human sensorimotor learning: adaptation, skill, and beyond.

Curr Opin Neurobiol. 2011-7-20

[5]
Optimisation of the mean boat velocity in rowing.

Comput Methods Biomech Biomed Engin. 2012

[6]
Motor learning.

Curr Biol. 2010-6-8

[7]
Simulation technology for skills training and competency assessment in medical education.

J Gen Intern Med. 2008-1

[8]
A simple 1+ dimensional model of rowing mimics observed forces and motions.

Hum Mov Sci. 2006-4

[9]
Speed-of-processing and driving simulator training result in improved driving performance.

Hum Factors. 2003

[10]
Augmented Feedback Presented in a Virtual Environment Accelerates Learning of a Difficult Motor Task.

J Mot Behav. 1997-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索