Mertens Marianne E, Hermann Alina, Bühren Anne, Olde-Damink Leon, Möckel Diana, Gremse Felix, Ehling Josef, Kiessling Fabian, Lammers Twan
Department for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH - Aachen University Pauwelsstrasse 20, 52074 Aachen (Germany).
Matricel GmbH Kaiserstraße 100 52134 Herzogenrath (Germany).
Adv Funct Mater. 2014 Feb 12;24(6):754-762. doi: 10.1002/adfm.201301275.
Non-invasive imaging holds significant potential for implementation in tissue engineering. It can e.g. be used to monitor the localization and function of tissue-engineered implants, as well as their resorption and remodelling. Thus far, however, the vast majority of efforts in this area of research have focused on the use of ultrasmall super-paramagnetic iron oxide (USPIO) nanoparticle-labeled cells, colonizing the scaffolds, to indirectly image the implant material. Reasoning that directly labeling scaffold materials might be more beneficial (enabling imaging also in case of non-cellularized implants), more informative (enabling the non-invasive visualization and quantification of scaffold degradation) and more easy to translate into the clinic (since cell-free materials are less complex from a regulatory point-of-view), we here prepared three different types of USPIO nanoparticles, and incorporated them both passively and actively (via chemical conjugation; during collagen crosslinking) into collagen-based scaffold materials. We furthermore optimized the amount of USPIO incorporated into the scaffolds, correlated the amount of entrapped USPIO with MR signal intensity, showed that the labeled scaffolds are highly biocompatible, demonstrated that scaffold degradation can be visualized using MRI and provided initial proof-of-principle for the in vivo visualization of the scaffolds. Consequently, USPIO-labeled scaffold materials seem to be highly suitable for image-guided tissue engineering applications.
非侵入性成像在组织工程中的应用具有巨大潜力。例如,它可用于监测组织工程植入物的定位和功能,以及它们的吸收和重塑。然而,到目前为止,该研究领域的绝大多数工作都集中在使用超小超顺磁性氧化铁(USPIO)纳米颗粒标记的细胞,使其在支架上定植,以间接成像植入材料。我们推断直接标记支架材料可能更有益(即使在无细胞植入物的情况下也能成像)、信息更丰富(能够对支架降解进行非侵入性可视化和定量)且更易于转化为临床应用(因为从监管角度来看,无细胞材料更简单),因此我们制备了三种不同类型的USPIO纳米颗粒,并通过被动和主动方式(通过化学偶联;在胶原蛋白交联过程中)将它们掺入基于胶原蛋白的支架材料中。我们还优化了掺入支架中的USPIO的量,将捕获的USPIO的量与磁共振信号强度相关联,表明标记的支架具有高度生物相容性,证明可以使用磁共振成像可视化支架降解,并为支架的体内可视化提供了初步原理验证。因此,USPIO标记的支架材料似乎非常适合图像引导的组织工程应用。