Suppr超能文献

使用具有稳定权重调整的Cox模型在观察性研究中估计随时间变化的暴露因素的影响。

Estimating the effects of time-varying exposures in observational studies using Cox models with stabilized weights adjustment.

作者信息

Xu Stanley, Shetterly Susan, Raebel Marsha A, Ho P Michael, Tsai Thomas T, Magid David

机构信息

Institute for Health Research, Kaiser Permanente Colorado, Denver, CO, USA; University of Colorado, Denver, CO, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2014 Aug;23(8):812-8. doi: 10.1002/pds.3601. Epub 2014 Mar 4.

Abstract

PURPOSE

Assessing the safety and effectiveness of medical products with observational electronic medical record data is challenging when the treatment is time-varying. The objective of this paper is to develop a Cox model stratified by event times with stabilized weights (SWs) adjustment to examine the effect of time-varying treatment in observational studies.

METHODS

Time-varying SWs are calculated at unique event times and are used in a Cox model stratified by event times to estimate the effect of time-varying treatment. We applied this method in examining the effect of an antiplatelet agent, clopidogrel, on events, including bleeding, myocardial infarction, and death after a drug-eluting stent was implanted in coronary artery. Clopidogrel use may change over time on the basis of patients' behavior (e.g., non-adherence) and physicians' recommendations (e.g., end of duration of therapy). We also compared the results with those from a Cox model for counting processes adjusting for all covariates used in creating SWs.

RESULTS

We demonstrate that the (i) results from the stratified Cox model without SWs adjustment and the Cox model for counting processes without covariate adjustment are identical in analyzing the clopidogrel data; and (ii) the effects of clopidogrel on bleeding, myocardial infarction, and death are larger in the stratified Cox model with SWs adjustment compared with those from the Cox model for counting processes with covariate adjustment.

CONCLUSIONS

The Cox model stratified by event times with time-varying SWs adjustment is useful in estimating the effect of time-varying treatments in observational studies while balancing for known confounders.

摘要

目的

当治疗是随时间变化时,利用观察性电子病历数据评估医疗产品的安全性和有效性具有挑战性。本文的目的是开发一种通过事件时间分层并进行稳定权重(SWs)调整的Cox模型,以检验观察性研究中随时间变化的治疗效果。

方法

在唯一的事件时间计算随时间变化的SWs,并将其用于按事件时间分层的Cox模型中,以估计随时间变化的治疗效果。我们将此方法应用于检验抗血小板药物氯吡格雷对冠状动脉植入药物洗脱支架后的出血、心肌梗死和死亡等事件的影响。氯吡格雷的使用可能会根据患者的行为(如不依从)和医生的建议(如治疗疗程结束)随时间而变化。我们还将结果与用于计数过程的Cox模型的结果进行了比较,该模型对创建SWs时使用的所有协变量进行了调整。

结果

我们证明(i)在分析氯吡格雷数据时,未进行SWs调整的分层Cox模型和未进行协变量调整的计数过程Cox模型的结果相同;(ii)与进行协变量调整的计数过程Cox模型相比,进行SWs调整的分层Cox模型中氯吡格雷对出血、心肌梗死和死亡的影响更大。

结论

通过事件时间分层并进行随时间变化的SWs调整的Cox模型,在平衡已知混杂因素的同时,有助于估计观察性研究中随时间变化的治疗效果。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验