Toutounji Hazem, Pipa Gordon
Institute of Cognitive Science, University of Osnabrück, Osnabrück, Lower Saxony, Germany.
PLoS Comput Biol. 2014 Mar 20;10(3):e1003512. doi: 10.1371/journal.pcbi.1003512. eCollection 2014 Mar.
It is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation. Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain's input. Here, we introduce a geometric theory of learning spatiotemporal computations through neuronal plasticity. To that end, we rigorously formulate the problem of neural representations as a relation in space between stimulus-induced neural activity and the asymptotic dynamics of excitable cortical networks. Backed up by computer simulations and numerical analysis, we show that two canonical and widely spread forms of neuronal plasticity, that is, spike-timing-dependent synaptic plasticity and intrinsic plasticity, are both necessary for creating neural representations, such that these computations become realizable. Interestingly, the effects of these forms of plasticity on the emerging neural code relate to properties necessary for both combating and utilizing noise. The neural dynamics also exhibits features of the most likely stimulus in the network's spontaneous activity. These properties of the spatiotemporal neural code resulting from plasticity, having their grounding in nature, further consolidate the biological relevance of our findings.
神经元可塑性在产生神经功能和计算中占据核心地位,这是一个长期确立的事实。然而,对于循环皮质网络中的神经元如何学会对时间和空间上扩展的刺激进行计算,目前尚无统一的解释。然而,这些刺激构成了大脑输入的常态,而非例外。在此,我们引入一种通过神经元可塑性学习时空计算的几何理论。为此,我们将神经表征问题严格地表述为刺激诱发的神经活动与可兴奋皮质网络的渐近动力学之间在空间上的一种关系。在计算机模拟和数值分析的支持下,我们表明两种典型且广泛存在的神经元可塑性形式,即依赖于脉冲时间的突触可塑性和内在可塑性,对于创建神经表征都是必要的,从而使这些计算得以实现。有趣的是,这些可塑性形式对新兴神经编码的影响与对抗和利用噪声所需的特性相关。神经动力学还表现出网络自发活动中最可能刺激的特征。由可塑性产生的这种时空神经编码的这些特性,基于自然基础,进一步巩固了我们研究结果的生物学相关性。