Mangan Niall, Brenner Michael
Elife. 2014 Apr 29;3:e02043. doi: 10.7554/eLife.02043.
Cyanobacteria are photosynthetic bacteria with a unique CO2 concentrating mechanism (CCM), enhancing carbon fixation. Understanding the CCM requires a systems level perspective of how molecular components work together to enhance CO2 fixation. We present a mathematical model of the cyanobacterial CCM, giving the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) for efficient carbon fixation. Efficiency requires saturating the RuBisCO reaction, staying below saturation for carbonic anhydrase, and avoiding wasteful oxygenation reactions. We find selectivity at the carboxysome shell is not necessary; there is an optimal non-specific carboxysome shell permeability. We compare the efficacy of facilitated CO2 uptake, CO2 scavenging, and HCO3- transport with varying external pH. At the optimal carboxysome permeability, contributions from CO2 scavenging at the cell membrane are small. We examine the cumulative benefits of CCM spatial organization strategies: enzyme co-localization and compartmentalization.
蓝藻是具有独特二氧化碳浓缩机制(CCM)的光合细菌,可增强碳固定。理解CCM需要从系统层面了解分子成分如何协同作用以增强二氧化碳固定。我们提出了一个蓝藻CCM的数学模型,给出了有效碳固定的参数范围(表达水平、催化速率、羧酶体外壳的通透性)。效率要求使RuBisCO反应饱和,使碳酸酐酶保持在饱和以下,并避免浪费性的氧化反应。我们发现羧酶体外壳的选择性并非必要;存在一个最佳的非特异性羧酶体外壳通透性。我们比较了在不同外部pH值下促进二氧化碳吸收、二氧化碳清除和HCO3-运输的功效。在最佳羧酶体通透性下,细胞膜上二氧化碳清除的贡献很小。我们研究了CCM空间组织策略的累积益处:酶共定位和区室化。