Suppr超能文献

通过多糖单加氧酶中单核铜中心对 O2 的激活的光谱和计算研究。

Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases.

机构信息

Department of Chemistry, Stanford University, Stanford, CA 94305;

Novozymes, Inc., Davis, CA 95618;

出版信息

Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8797-802. doi: 10.1073/pnas.1408115111. Epub 2014 Jun 2.

Abstract

Strategies for O2 activation by copper enzymes were recently expanded to include mononuclear Cu sites, with the discovery of the copper-dependent polysaccharide monooxygenases, also classified as auxiliary-activity enzymes 9-11 (AA9-11). These enzymes are finding considerable use in industrial biofuel production. Crystal structures of polysaccharide monooxygenases have emerged, but experimental studies are yet to determine the solution structure of the Cu site and how this relates to reactivity. From X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopies, we observed a change from four-coordinate Cu(II) to three-coordinate Cu(I) of the active site in solution, where three protein-derived nitrogen ligands coordinate the Cu in both redox states, and a labile hydroxide ligand is lost upon reduction. The spectroscopic data allowed for density functional theory calculations of an enzyme active site model, where the optimized Cu(I) and (II) structures were consistent with the experimental data. The O2 reactivity of the Cu(I) site was probed by EPR and stopped-flow absorption spectroscopies, and a rapid one-electron reduction of O2 and regeneration of the resting Cu(II) enzyme were observed. This reactivity was evaluated computationally, and by calibration to Cu-superoxide model complexes, formation of an end-on Cu-AA9-superoxide species was found to be thermodynamically favored. We discuss how this thermodynamically difficult one-electron reduction of O2 is enabled by the unique protein structure where two nitrogen ligands from His1 dictate formation of a T-shaped Cu(I) site, which provides an open coordination position for strong O2 binding with very little reorganization energy.

摘要

最近,铜酶的 O2 激活策略被扩展到包括单核 Cu 位点,这一发现来自于铜依赖性多糖单加氧酶,也被归类为辅助活性酶 9-11(AA9-11)。这些酶在工业生物燃料生产中得到了广泛的应用。多糖单加氧酶的晶体结构已经出现,但实验研究仍需确定 Cu 位点的溶液结构以及它与反应性的关系。通过 X 射线吸收近边结构和扩展 X 射线吸收精细结构光谱学,我们观察到在溶液中活性位点的四配位 Cu(II)到三配位 Cu(I)的转变,其中三个蛋白质衍生的氮配体在两种氧化还原状态下配位 Cu,并且在还原时失去一个不稳定的氢氧化物配体。光谱数据允许对酶活性位点模型进行密度泛函理论计算,其中优化的 Cu(I)和 (II)结构与实验数据一致。通过 EPR 和停流吸收光谱学探测 Cu(I)位点的 O2 反应性,观察到 O2 的快速单电子还原和酶的静止 Cu(II)的再生。这种反应性通过计算进行了评估,并通过与 Cu-超氧化物模型配合物的校准,发现形成端到端的 Cu-AA9-超氧化物物种在热力学上是有利的。我们讨论了这种独特的蛋白质结构如何使 O2 的热力学上困难的单电子还原成为可能,其中两个来自 His1 的氮配体决定了 T 形 Cu(I)位点的形成,该位点为强 O2 结合提供了开放的配位位置,几乎没有重组能。

相似文献

1
Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases.
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8797-802. doi: 10.1073/pnas.1408115111. Epub 2014 Jun 2.
2
Mechanistic basis of substrate-O coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19178-19189. doi: 10.1073/pnas.2004277117. Epub 2020 Jul 28.
5
Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):149-54. doi: 10.1073/pnas.1316609111. Epub 2013 Dec 16.
6
Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12035-12040. doi: 10.1073/pnas.1614807113. Epub 2016 Oct 10.
10
Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.
J Biol Chem. 2016 Jun 10;291(24):12838-12850. doi: 10.1074/jbc.M116.722447. Epub 2016 Apr 15.

引用本文的文献

2
Functional variation among LPMOs revealed by the inhibitory effects of cyanide and buffer ions.
FEBS Lett. 2025 May;599(9):1317-1336. doi: 10.1002/1873-3468.15105. Epub 2025 Feb 6.
4
Copper(II)-Oxyl Formation in a Biomimetic Complex Activated by Hydrogen Peroxide: The Key Role of Trans-Bis(Hydroxo) Species.
Inorg Chem. 2024 Dec 9;63(49):23082-23094. doi: 10.1021/acs.inorgchem.4c01948. Epub 2024 Nov 25.
7
8
A cellulosomal yeast reaction system of lignin-degrading enzymes for cellulosic ethanol fermentation.
Biotechnol Lett. 2024 Aug;46(4):531-543. doi: 10.1007/s10529-024-03485-0. Epub 2024 Apr 12.
9
The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent.
Biophys J. 2024 May 7;123(9):1139-1151. doi: 10.1016/j.bpj.2024.04.002. Epub 2024 Apr 2.
10
Enzymatic degradation of cellulose in soil: A review.
Heliyon. 2024 Jan 3;10(1):e24022. doi: 10.1016/j.heliyon.2024.e24022. eCollection 2024 Jan 15.

本文引用的文献

1
Discovery and characterization of a new family of lytic polysaccharide monooxygenases.
Nat Chem Biol. 2014 Feb;10(2):122-6. doi: 10.1038/nchembio.1417. Epub 2013 Dec 22.
2
Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases.
J Am Chem Soc. 2014 Jan 15;136(2):562-5. doi: 10.1021/ja409384b. Epub 2013 Dec 26.
3
Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):149-54. doi: 10.1073/pnas.1316609111. Epub 2013 Dec 16.
4
A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides.
J Biol Chem. 2014 Jan 31;289(5):2632-42. doi: 10.1074/jbc.M113.530196. Epub 2013 Dec 9.
5
Correlation of the electronic and geometric structures in mononuclear copper(II) superoxide complexes.
Inorg Chem. 2013 Nov 18;52(22):12872-4. doi: 10.1021/ic402357u. Epub 2013 Oct 28.
6
Recent insights into copper-containing lytic polysaccharide mono-oxygenases.
Curr Opin Struct Biol. 2013 Oct;23(5):660-8. doi: 10.1016/j.sbi.2013.05.006. Epub 2013 Jun 14.
7
The copper active site of CBM33 polysaccharide oxygenases.
J Am Chem Soc. 2013 Apr 24;135(16):6069-77. doi: 10.1021/ja402106e. Epub 2013 Apr 10.
9
Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes.
Biotechnol Biofuels. 2013 Mar 21;6(1):41. doi: 10.1186/1754-6834-6-41.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验