Suppr超能文献

相似文献

1
Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases.
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8797-802. doi: 10.1073/pnas.1408115111. Epub 2014 Jun 2.
2
Mechanistic basis of substrate-O coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19178-19189. doi: 10.1073/pnas.2004277117. Epub 2020 Jul 28.
5
Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):149-54. doi: 10.1073/pnas.1316609111. Epub 2013 Dec 16.
6
Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12035-12040. doi: 10.1073/pnas.1614807113. Epub 2016 Oct 10.
10
Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.
J Biol Chem. 2016 Jun 10;291(24):12838-12850. doi: 10.1074/jbc.M116.722447. Epub 2016 Apr 15.

引用本文的文献

2
Functional variation among LPMOs revealed by the inhibitory effects of cyanide and buffer ions.
FEBS Lett. 2025 May;599(9):1317-1336. doi: 10.1002/1873-3468.15105. Epub 2025 Feb 6.
4
Copper(II)-Oxyl Formation in a Biomimetic Complex Activated by Hydrogen Peroxide: The Key Role of Trans-Bis(Hydroxo) Species.
Inorg Chem. 2024 Dec 9;63(49):23082-23094. doi: 10.1021/acs.inorgchem.4c01948. Epub 2024 Nov 25.
7
8
A cellulosomal yeast reaction system of lignin-degrading enzymes for cellulosic ethanol fermentation.
Biotechnol Lett. 2024 Aug;46(4):531-543. doi: 10.1007/s10529-024-03485-0. Epub 2024 Apr 12.
9
The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent.
Biophys J. 2024 May 7;123(9):1139-1151. doi: 10.1016/j.bpj.2024.04.002. Epub 2024 Apr 2.
10
Enzymatic degradation of cellulose in soil: A review.
Heliyon. 2024 Jan 3;10(1):e24022. doi: 10.1016/j.heliyon.2024.e24022. eCollection 2024 Jan 15.

本文引用的文献

1
Discovery and characterization of a new family of lytic polysaccharide monooxygenases.
Nat Chem Biol. 2014 Feb;10(2):122-6. doi: 10.1038/nchembio.1417. Epub 2013 Dec 22.
2
Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases.
J Am Chem Soc. 2014 Jan 15;136(2):562-5. doi: 10.1021/ja409384b. Epub 2013 Dec 26.
3
Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):149-54. doi: 10.1073/pnas.1316609111. Epub 2013 Dec 16.
4
A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides.
J Biol Chem. 2014 Jan 31;289(5):2632-42. doi: 10.1074/jbc.M113.530196. Epub 2013 Dec 9.
5
Correlation of the electronic and geometric structures in mononuclear copper(II) superoxide complexes.
Inorg Chem. 2013 Nov 18;52(22):12872-4. doi: 10.1021/ic402357u. Epub 2013 Oct 28.
6
Recent insights into copper-containing lytic polysaccharide mono-oxygenases.
Curr Opin Struct Biol. 2013 Oct;23(5):660-8. doi: 10.1016/j.sbi.2013.05.006. Epub 2013 Jun 14.
7
The copper active site of CBM33 polysaccharide oxygenases.
J Am Chem Soc. 2013 Apr 24;135(16):6069-77. doi: 10.1021/ja402106e. Epub 2013 Apr 10.
9
Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes.
Biotechnol Biofuels. 2013 Mar 21;6(1):41. doi: 10.1186/1754-6834-6-41.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验