Suppr超能文献

基于迭代团扩展和基因本体过滤的蛋白质-蛋白质相互作用预测

Protein-protein interactions prediction based on iterative clique extension with gene ontology filtering.

作者信息

Yang Lei, Tang Xianglong

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Mailbox 352, 92 West Dazhi Street, Nan Gang District, Harbin 150001, China.

出版信息

ScientificWorldJournal. 2014 Jan 22;2014:523634. doi: 10.1155/2014/523634. eCollection 2014.

Abstract

Cliques (maximal complete subnets) in protein-protein interaction (PPI) network are an important resource used to analyze protein complexes and functional modules. Clique-based methods of predicting PPI complement the data defection from biological experiments. However, clique-based predicting methods only depend on the topology of network. The false-positive and false-negative interactions in a network usually interfere with prediction. Therefore, we propose a method combining clique-based method of prediction and gene ontology (GO) annotations to overcome the shortcoming and improve the accuracy of predictions. According to different GO correcting rules, we generate two predicted interaction sets which guarantee the quality and quantity of predicted protein interactions. The proposed method is applied to the PPI network from the Database of Interacting Proteins (DIP) and most of the predicted interactions are verified by another biological database, BioGRID. The predicted protein interactions are appended to the original protein network, which leads to clique extension and shows the significance of biological meaning.

摘要

蛋白质-蛋白质相互作用(PPI)网络中的团(最大完全子网)是用于分析蛋白质复合物和功能模块的重要资源。基于团的PPI预测方法弥补了生物学实验中的数据缺陷。然而,基于团的预测方法仅依赖于网络拓扑结构。网络中的假阳性和假阴性相互作用通常会干扰预测。因此,我们提出了一种将基于团的预测方法与基因本体(GO)注释相结合的方法,以克服这一缺点并提高预测的准确性。根据不同的GO校正规则,我们生成了两个预测相互作用集,保证了预测蛋白质相互作用的质量和数量。所提出的方法应用于来自相互作用蛋白质数据库(DIP)的PPI网络,并且大多数预测的相互作用通过另一个生物学数据库BioGRID进行了验证。预测的蛋白质相互作用被附加到原始蛋白质网络中,这导致了团扩展并显示了生物学意义的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51ab/3919085/7ed2e97b30b5/TSWJ2014-523634.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验