Suppr超能文献

利用化学气相沉积法制备的六方氮化硼增强向石墨烯中的隧穿自旋注入。

Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride.

作者信息

Kamalakar M Venkata, Dankert André, Bergsten Johan, Ive Tommy, Dash Saroj P

机构信息

Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden.

出版信息

Sci Rep. 2014 Aug 26;4:6146. doi: 10.1038/srep06146.

Abstract

The van der Waals heterostructures of two-dimensional (2D) atomic crystals constitute a new paradigm in nanoscience. Hybrid devices of graphene with insulating 2D hexagonal boron nitride (h-BN) have emerged as promising nanoelectronic architectures through demonstrations of ultrahigh electron mobilities and charge-based tunnel transistors. Here, we expand the functional horizon of such 2D materials demonstrating the quantum tunneling of spin polarized electrons through atomic planes of CVD grown h-BN. We report excellent tunneling behavior of h-BN layers together with tunnel spin injection and transport in graphene using ferromagnet/h-BN contacts. Employing h-BN tunnel contacts, we observe enhancements in both spin signal amplitude and lifetime by an order of magnitude. We demonstrate spin transport and precession over micrometer-scale distances with spin lifetime up to 0.46 nanosecond. Our results and complementary magnetoresistance calculations illustrate that CVD h-BN tunnel barrier provides a reliable, reproducible and alternative approach to address the conductivity mismatch problem for spin injection into graphene.

摘要

二维(2D)原子晶体的范德华异质结构构成了纳米科学中的一种新范式。石墨烯与绝缘二维六方氮化硼(h-BN)的混合器件通过超高电子迁移率和基于电荷的隧道晶体管的演示,已成为有前景的纳米电子架构。在此,我们拓展了此类二维材料的功能范围,展示了自旋极化电子通过化学气相沉积(CVD)生长的h-BN原子平面的量子隧穿。我们报告了h-BN层优异的隧穿行为,以及利用铁磁体/h-BN接触在石墨烯中的隧道自旋注入和输运。采用h-BN隧道接触,我们观察到自旋信号幅度和寿命均增强了一个数量级。我们展示了自旋在微米尺度距离上的输运和进动,自旋寿命长达0.46纳秒。我们的结果以及互补的磁阻计算表明,CVD h-BN隧道势垒为解决向石墨烯中进行自旋注入的电导率失配问题提供了一种可靠、可重复的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ed/4143790/d49d122244fc/srep06146-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验