Suppr超能文献

利用多波长光遗传学控制对神经元中基于绿色荧光蛋白(GFP)的报告基因进行成像。

Imaging GFP-based reporters in neurons with multiwavelength optogenetic control.

作者信息

Venkatachalam Veena, Cohen Adam E

机构信息

Biophysics Program, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts.

Departments of Chemistry and Chemical Biology and Physics, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland.

出版信息

Biophys J. 2014 Oct 7;107(7):1554-63. doi: 10.1016/j.bpj.2014.08.020.

Abstract

To study the impact of neural activity on cellular physiology, one would like to combine precise control of firing patterns with highly sensitive probes of cellular physiology. Light-gated ion channels, e.g., Channelrhodopsin-2, enable precise control of firing patterns; green fluorescent protein-based reporters, e.g., the GCaMP6f Ca(2+) reporter, enable highly sensitive probing of cellular physiology. However, for most actuator-reporter combinations, spectral overlap prevents straightforward combination within a single cell. Here we explore multiwavelength control of channelrhodopsins to circumvent this limitation. The "stoplight" technique described in this article uses channelrhodopsin variants that are opened by blue light and closed by orange light. Cells are illuminated with constant blue light to excite fluorescence of a green fluorescent protein-based reporter. Modulated illumination with orange light negatively regulates activation of the channelrhodopsin. We performed detailed photophysical characterization and kinetic modeling of four candidate stoplight channelrhodopsins. The variant with the highest contrast, sdChR(C138S,E154A), enabled all-optical measurements of activity-induced calcium transients in cultured rat hippocampal neurons, although cell-to-cell variation in expression levels presents a challenge for quantification.

摘要

为了研究神经活动对细胞生理学的影响,人们希望将放电模式的精确控制与细胞生理学的高灵敏度探针相结合。光门控离子通道,例如通道视紫红质-2,能够实现对放电模式的精确控制;基于绿色荧光蛋白的报告基因,例如GCaMP6f钙离子报告基因,能够对细胞生理学进行高灵敏度探测。然而,对于大多数促动器-报告基因组合而言,光谱重叠阻碍了在单个细胞内进行直接组合。在此,我们探索通道视紫红质的多波长控制以克服这一限制。本文所述的“交通信号灯”技术使用的通道视紫红质变体可被蓝光开启并被橙光关闭。用恒定蓝光照射细胞以激发基于绿色荧光蛋白的报告基因的荧光。用橙光进行调制照射可对通道视紫红质的激活进行负调控。我们对四种候选交通信号灯通道视紫红质进行了详细的光物理表征和动力学建模。对比度最高的变体sdChR(C138S,E154A),能够对培养的大鼠海马神经元中活动诱导的钙瞬变进行全光学测量,尽管表达水平的细胞间差异给定量分析带来了挑战。

相似文献

3
Color-tuned channelrhodopsins for multiwavelength optogenetics.彩色调控通道视紫红蛋白用于多波长光遗传学。
J Biol Chem. 2012 Sep 14;287(38):31804-12. doi: 10.1074/jbc.M112.391185. Epub 2012 Jul 27.

引用本文的文献

1
All-optical mapping of Ca transport and homeostasis in dendrites.树突中钙转运与稳态的全光学映射
Cell Calcium. 2025 Jan;125:102983. doi: 10.1016/j.ceca.2024.102983. Epub 2024 Dec 5.
3
Molecular Biology of Microbial Rhodopsins.微生物视紫红质的分子生物学
Methods Mol Biol. 2022;2501:53-69. doi: 10.1007/978-1-0716-2329-9_2.
4
All-optical interrogation of neural circuits in behaving mice.在行为小鼠中对神经回路进行全光学检测。
Nat Protoc. 2022 Jul;17(7):1579-1620. doi: 10.1038/s41596-022-00691-w. Epub 2022 Apr 27.
5
Towards translational optogenetics.走向转化光遗传学。
Nat Biomed Eng. 2023 Apr;7(4):349-369. doi: 10.1038/s41551-021-00829-3. Epub 2022 Jan 13.

本文引用的文献

3
Bringing bioelectricity to light.将生物电带入光明。
Annu Rev Biophys. 2014;43:211-32. doi: 10.1146/annurev-biophys-051013-022717. Epub 2014 Apr 24.
5
Conversion of channelrhodopsin into a light-gated chloride channel.将通道视紫红质转化为光门控氯离子通道。
Science. 2014 Apr 25;344(6182):409-12. doi: 10.1126/science.1249375. Epub 2014 Mar 27.
7
Independent optical excitation of distinct neural populations.独立光学激发不同的神经群体。
Nat Methods. 2014 Mar;11(3):338-46. doi: 10.1038/nmeth.2836. Epub 2014 Feb 9.
10
Combining calcium imaging with other optical techniques.将钙成像与其他光学技术相结合。
Cold Spring Harb Protoc. 2013 Dec 1;2013(12):1125-31. doi: 10.1101/pdb.top066167.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验