Suppr超能文献

用于癌症成像的纳米颗粒:优势、劣势与前景。

Nanoparticles for cancer imaging: The good, the bad, and the promise.

作者信息

Chapman Sandra, Dobrovolskaia Marina, Farahani Keyvan, Goodwin Andrew, Joshi Amit, Lee Hakho, Meade Thomas, Pomper Martin, Ptak Krzysztof, Rao Jianghong, Singh Ravi, Sridhar Srinivas, Stern Stephan, Wang Andrew, Weaver John B, Woloschak Gayle, Yang Lily

机构信息

Office of Cancer Nanotechnology Research, Center for Strategic Scientific Initiatives, National Cancer Institute, NIH, Bethesda, MD 20892, United States.

Nanotechnology Characterization Laboratory, SAIC-Frederick Inc., Advanced Technology Research Facility - Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD 21702, United States.

出版信息

Nano Today. 2013 Oct;8(5):454-460. doi: 10.1016/j.nantod.2013.06.001.

Abstract

Recent advances in molecular imaging and nanotechnology are providing new opportunities for biomedical imaging with great promise for the development of novel imaging agents. The unique optical, magnetic, and chemical properties of materials at the scale of nanometers allow the creation of imaging probes with better contrast enhancement, increased sensitivity, controlled biodistribution, better spatial and temporal information, multi-functionality and multi-modal imaging across MRI, PET, SPECT, and ultrasound. These features could ultimately translate to clinical advantages such as earlier detection, real time assessment of disease progression and personalized medicine. However, several years of investigation into the application of these materials to cancer research has revealed challenges that have delayed the successful application of these agents to the field of biomedical imaging. Understanding these challenges is critical to take full advantage of the benefits offered by nano-sized imaging agents. Therefore, this article presents the lessons learned and challenges encountered by a group of leading researchers in this field, and suggests ways forward to develop nanoparticle probes for cancer imaging. Published by Elsevier Ltd.

摘要

分子成像和纳米技术的最新进展为生物医学成像提供了新机遇,有望开发新型成像剂。纳米尺度材料独特的光学、磁性和化学性质,使得能够创建具有更好对比度增强、更高灵敏度、可控生物分布、更好的空间和时间信息、多功能性以及跨越磁共振成像(MRI)、正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)和超声的多模态成像的成像探针。这些特性最终可能转化为临床优势,如早期检测、疾病进展的实时评估和个性化医疗。然而,对这些材料在癌症研究中的应用进行了数年研究后发现了一些挑战,这些挑战延迟了这些试剂在生物医学成像领域的成功应用。了解这些挑战对于充分利用纳米成像剂带来的益处至关重要。因此,本文介绍了该领域一组顶尖研究人员所吸取的经验教训和遇到的挑战,并提出了开发用于癌症成像的纳米颗粒探针的前进方向。由爱思唯尔有限公司出版

相似文献

1
Nanoparticles for cancer imaging: The good, the bad, and the promise.
Nano Today. 2013 Oct;8(5):454-460. doi: 10.1016/j.nantod.2013.06.001.
2
Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology.
Acc Chem Res. 2008 Dec;41(12):1630-40. doi: 10.1021/ar800045c.
3
Nanotechnology: an evidence-based analysis.
Ont Health Technol Assess Ser. 2006;6(19):1-43. Epub 2006 Nov 1.
4
Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field.
Int J Nanomedicine. 2014 Mar 5;9:1347-65. doi: 10.2147/IJN.S60206. eCollection 2014.
5
Advanced Optical Imaging-Guided Nanotheranostics towards Personalized Cancer Drug Delivery.
Nanomaterials (Basel). 2022 Jan 26;12(3):399. doi: 10.3390/nano12030399.
6
Current Trends and Advances in Nanoplatforms-Based Imaging for Cancer Diagnosis.
Indian J Microbiol. 2025 Mar;65(1):137-176. doi: 10.1007/s12088-024-01373-9. Epub 2024 Aug 9.
7
Engineering imaging probes and molecular machines for nanomedicine.
Sci China Life Sci. 2012 Oct;55(10):843-61. doi: 10.1007/s11427-012-4380-1. Epub 2012 Oct 31.
8
Targeted nanotechnology for cancer imaging.
Adv Drug Deliv Rev. 2014 Sep 30;76:79-97. doi: 10.1016/j.addr.2014.08.002. Epub 2014 Aug 9.
9
Small is Smarter: Nano MRI Contrast Agents - Advantages and Recent Achievements.
Small. 2016 Feb 3;12(5):556-76. doi: 10.1002/smll.201502309. Epub 2015 Dec 17.
10
Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers.
Front Chem. 2022 Apr 12;10:830133. doi: 10.3389/fchem.2022.830133. eCollection 2022.

引用本文的文献

1
Targeting breast cancer: the promise of phage-based nanomedicines.
Breast Cancer Res Treat. 2025 Jun;211(3):561-580. doi: 10.1007/s10549-025-07696-5. Epub 2025 Apr 17.
2
Optimizing Polyethylene Glycol Coating for Stealth Nanodiamonds.
ACS Appl Mater Interfaces. 2025 Apr 2;17(13):19304-19316. doi: 10.1021/acsami.4c21303. Epub 2025 Mar 24.
3
Advanced photoluminescent nanomaterials for targeted bioimaging of cancer cells.
Heliyon. 2024 Dec 31;11(1):e41566. doi: 10.1016/j.heliyon.2024.e41566. eCollection 2025 Jan 15.
4
Nanotechnology in oncology: a mini review.
Rev Assoc Med Bras (1992). 2024 Dec 2;70(12):e20241347. doi: 10.1590/1806-9282.20241347. eCollection 2024.
5
STING activation disrupts tumor vasculature to overcome the EPR limitation and increase drug deposition.
Sci Adv. 2024 Jul 19;10(29):eado0082. doi: 10.1126/sciadv.ado0082. Epub 2024 Jul 17.
6
Self-assembled Janus base nanotubes: chemistry and applications.
Front Chem. 2024 Jan 18;11:1346014. doi: 10.3389/fchem.2023.1346014. eCollection 2023.
7
Nanoparticles for Thrombus Diagnosis and Therapy: Emerging Trends in Thrombus-theranostics.
Nanotheranostics. 2024 Jan 1;8(2):127-149. doi: 10.7150/ntno.92184. eCollection 2024.
9
Dendrimers: Advancements and Potential Applications in Cancer Diagnosis and Treatment-An Overview.
Pharmaceutics. 2023 May 4;15(5):1406. doi: 10.3390/pharmaceutics15051406.
10
New opportunities for RGD-engineered metal nanoparticles in cancer.
Mol Cancer. 2023 May 25;22(1):87. doi: 10.1186/s12943-023-01784-0.

本文引用的文献

1
A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application.
Appl Phys Lett. 2011 May 23;98(21):213701. doi: 10.1063/1.3595268. Epub 2011 May 25.
2
Nanomaterial standards for efficacy and toxicity assessment.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 Jan-Feb;2(1):99-112. doi: 10.1002/wnan.66.
3
Evaluation of nanoparticle immunotoxicity.
Nat Nanotechnol. 2009 Jul;4(7):411-4. doi: 10.1038/nnano.2009.175. Epub 2009 Jun 28.
4
Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats.
Nanomedicine (Lond). 2008 Oct;3(5):703-17. doi: 10.2217/17435889.3.5.703.
5
Pharmacokinetics and biodistribution of nanoparticles.
Mol Pharm. 2008 Jul-Aug;5(4):496-504. doi: 10.1021/mp800049w. Epub 2008 Jul 9.
6
Imaging in the era of molecular oncology.
Nature. 2008 Apr 3;452(7187):580-9. doi: 10.1038/nature06917.
7
Renal clearance of quantum dots.
Nat Biotechnol. 2007 Oct;25(10):1165-70. doi: 10.1038/nbt1340. Epub 2007 Sep 23.
8
Nanotechnology safety concerns revisited.
Toxicol Sci. 2008 Jan;101(1):4-21. doi: 10.1093/toxsci/kfm169. Epub 2007 Jun 30.
9
Tomographic imaging using the nonlinear response of magnetic particles.
Nature. 2005 Jun 30;435(7046):1214-7. doi: 10.1038/nature03808.
10
Transport of molecules, particles, and cells in solid tumors.
Annu Rev Biomed Eng. 1999;1:241-63. doi: 10.1146/annurev.bioeng.1.1.241.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验