The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom.
The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18422-7. doi: 10.1073/pnas.1420551111. Epub 2014 Dec 2.
Calculated using classical electromagnetism, the van der Waals force increases without limit as two surfaces approach. In reality, the force saturates because the electrons cannot respond to fields of very short wavelength: polarization charges are always smeared out to some degree and in consequence the response is nonlocal. Nonlocality also plays an important role in the optical spectrum and distribution of the modes but introduces complexity into calculations, hindering an analytical solution for interactions at the nanometer scale. Here, taking as an example the case of two touching nanospheres, we show for the first time, to our knowledge, that nonlocality in 3D plasmonic systems can be accurately analyzed using the transformation optics approach. The effects of nonlocality are found to dramatically weaken the field enhancement between the spheres and hence the van der Waals interaction and to modify the spectral shifts of plasmon modes.
利用经典电磁学计算,当两个表面接近时,范德瓦尔斯力会无限增加。但实际上,由于电子无法响应非常短波长的场,力会达到饱和:极化电荷总是在一定程度上被扩散,因此响应是非局部的。非局部性在光学光谱和模式分布中也起着重要作用,但会给计算带来复杂性,阻碍纳米尺度相互作用的解析解的获得。在这里,我们以两个接触的纳米球为例,首次展示了,据我们所知,在 3D 等离子体系统中,非局部性可以使用变换光学方法进行精确分析。研究发现,非局部性会显著减弱球体之间的场增强,从而减弱范德瓦尔斯相互作用,并改变等离子体模式的光谱位移。