Suppr超能文献

纳米尺度的范德华相互作用:非局域性的影响。

van der Waals interactions at the nanoscale: the effects of nonlocality.

机构信息

The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom.

The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom

出版信息

Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18422-7. doi: 10.1073/pnas.1420551111. Epub 2014 Dec 2.

Abstract

Calculated using classical electromagnetism, the van der Waals force increases without limit as two surfaces approach. In reality, the force saturates because the electrons cannot respond to fields of very short wavelength: polarization charges are always smeared out to some degree and in consequence the response is nonlocal. Nonlocality also plays an important role in the optical spectrum and distribution of the modes but introduces complexity into calculations, hindering an analytical solution for interactions at the nanometer scale. Here, taking as an example the case of two touching nanospheres, we show for the first time, to our knowledge, that nonlocality in 3D plasmonic systems can be accurately analyzed using the transformation optics approach. The effects of nonlocality are found to dramatically weaken the field enhancement between the spheres and hence the van der Waals interaction and to modify the spectral shifts of plasmon modes.

摘要

利用经典电磁学计算,当两个表面接近时,范德瓦尔斯力会无限增加。但实际上,由于电子无法响应非常短波长的场,力会达到饱和:极化电荷总是在一定程度上被扩散,因此响应是非局部的。非局部性在光学光谱和模式分布中也起着重要作用,但会给计算带来复杂性,阻碍纳米尺度相互作用的解析解的获得。在这里,我们以两个接触的纳米球为例,首次展示了,据我们所知,在 3D 等离子体系统中,非局部性可以使用变换光学方法进行精确分析。研究发现,非局部性会显著减弱球体之间的场增强,从而减弱范德瓦尔斯相互作用,并改变等离子体模式的光谱位移。

相似文献

1
van der Waals interactions at the nanoscale: the effects of nonlocality.纳米尺度的范德华相互作用:非局域性的影响。
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18422-7. doi: 10.1073/pnas.1420551111. Epub 2014 Dec 2.
2
Description of van der Waals interactions using transformation optics.用变换光学描述范德华相互作用。
Phys Rev Lett. 2013 Jul 19;111(3):033602. doi: 10.1103/PhysRevLett.111.033602. Epub 2013 Jul 17.
6
Interface nano-optics with van der Waals polaritons.实现范德瓦尔斯极化激元的界面纳米光学。
Nature. 2021 Sep;597(7875):187-195. doi: 10.1038/s41586-021-03581-5. Epub 2021 Sep 8.

引用本文的文献

4
Atomically Precise Enantiopure Bimetallic Janus Clusters.原子精确的对映体纯双金属Janus簇。
ACS Cent Sci. 2022 Sep 28;8(9):1258-1264. doi: 10.1021/acscentsci.2c00754. Epub 2022 Sep 7.
5
Criteria ruling particle agglomeration.判定颗粒团聚的标准。
Beilstein J Nanotechnol. 2021 Sep 29;12:1093-1100. doi: 10.3762/bjnano.12.81. eCollection 2021.
6
Organ-on-a-chip platforms for evaluation of environmental nanoparticle toxicity.用于评估环境纳米颗粒毒性的芯片器官平台。
Bioact Mater. 2021 Feb 15;6(9):2801-2819. doi: 10.1016/j.bioactmat.2021.01.021. eCollection 2021 Sep.
9
Hybridization of singular plasmons via transformation optics.通过变换光学实现奇异等离子体激元的杂交
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13785-13790. doi: 10.1073/pnas.1902194116. Epub 2019 Jun 24.

本文引用的文献

4
Surface plasmons and nonlocality: a simple model.表面等离激元和非局域性:一个简单的模型。
Phys Rev Lett. 2013 Aug 30;111(9):093901. doi: 10.1103/PhysRevLett.111.093901. Epub 2013 Aug 26.
5
Description of van der Waals interactions using transformation optics.用变换光学描述范德华相互作用。
Phys Rev Lett. 2013 Jul 19;111(3):033602. doi: 10.1103/PhysRevLett.111.033602. Epub 2013 Jul 17.
9
Revealing the quantum regime in tunnelling plasmonics.揭示隧穿等离子体中的量子 regime。
Nature. 2012 Nov 22;491(7425):574-7. doi: 10.1038/nature11653. Epub 2012 Nov 7.
10
Probing the ultimate limits of plasmonic enhancement.探究等离子体激元增强的极限。
Science. 2012 Aug 31;337(6098):1072-4. doi: 10.1126/science.1224823.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验