Suppr超能文献

多样化种植方式缩小了有机农业与传统农业之间的产量差距。

Diversification practices reduce organic to conventional yield gap.

作者信息

Ponisio Lauren C, M'Gonigle Leithen K, Mace Kevi C, Palomino Jenny, de Valpine Perry, Kremen Claire

出版信息

Proc Biol Sci. 2015 Jan 22;282(1799):20141396. doi: 10.1098/rspb.2014.1396.

Abstract

Agriculture today places great strains on biodiversity, soils, water and the atmosphere, and these strains will be exacerbated if current trends in population growth, meat and energy consumption, and food waste continue. Thus, farming systems that are both highly productive and minimize environmental harms are critically needed. How organic agriculture may contribute to world food production has been subject to vigorous debate over the past decade. Here, we revisit this topic comparing organic and conventional yields with a new meta-dataset three times larger than previously used (115 studies containing more than 1000 observations) and a new hierarchical analytical framework that can better account for the heterogeneity and structure in the data. We find organic yields are only 19.2% (±3.7%) lower than conventional yields, a smaller yield gap than previous estimates. More importantly, we find entirely different effects of crop types and management practices on the yield gap compared with previous studies. For example, we found no significant differences in yields for leguminous versus non-leguminous crops, perennials versus annuals or developed versus developing countries. Instead, we found the novel result that two agricultural diversification practices, multi-cropping and crop rotations, substantially reduce the yield gap (to 9 ± 4% and 8 ± 5%, respectively) when the methods were applied in only organic systems. These promising results, based on robust analysis of a larger meta-dataset, suggest that appropriate investment in agroecological research to improve organic management systems could greatly reduce or eliminate the yield gap for some crops or regions.

摘要

当今农业给生物多样性、土壤、水和大气带来了巨大压力,如果人口增长、肉类和能源消费以及食物浪费的当前趋势持续下去,这些压力将会加剧。因此,迫切需要既高产又能将环境危害降至最低的耕作系统。在过去十年里,有机农业如何促进世界粮食生产一直是激烈辩论的主题。在此,我们重新审视这个话题,使用一个比以前大三倍的新元数据集(115项研究,包含1000多个观测数据)以及一个能够更好地解释数据异质性和结构的新层次分析框架,比较有机农业和传统农业的产量。我们发现有机农业的产量仅比传统农业低19.2%(±3.7%),产量差距比之前的估计要小。更重要的是,与之前的研究相比,我们发现作物类型和管理方式对产量差距有完全不同的影响。例如,我们发现豆科作物与非豆科作物、多年生作物与一年生作物或发达国家与发展中国家之间的产量没有显著差异。相反,我们有一个新发现,即两种农业多样化做法,即间作和轮作,当仅应用于有机系统时,可大幅缩小产量差距(分别缩小至9±4%和8±5%)。基于对一个更大的元数据集的稳健分析得出的这些有前景的结果表明,对农业生态研究进行适当投资以改善有机管理系统,可能会大幅缩小或消除某些作物或地区的产量差距。

相似文献

1
Diversification practices reduce organic to conventional yield gap.
Proc Biol Sci. 2015 Jan 22;282(1799):20141396. doi: 10.1098/rspb.2014.1396.
2
Comparing the yields of organic and conventional agriculture.
Nature. 2012 May 10;485(7397):229-32. doi: 10.1038/nature11069.
5
Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment?
J Environ Manage. 2015 Feb 1;149:193-208. doi: 10.1016/j.jenvman.2014.10.006. Epub 2014 Nov 9.
6
Yield and economic performance of organic and conventional cotton-based farming systems--results from a field trial in India.
PLoS One. 2013 Dec 4;8(12):e81039. doi: 10.1371/journal.pone.0081039. eCollection 2013.
7
Financial competitiveness of organic agriculture on a global scale.
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7611-6. doi: 10.1073/pnas.1423674112. Epub 2015 Jun 1.
8
Organic farming enhances soil microbial abundance and activity-A meta-analysis and meta-regression.
PLoS One. 2017 Jul 12;12(7):e0180442. doi: 10.1371/journal.pone.0180442. eCollection 2017.
9
Perennial Grain and Oilseed Crops.
Annu Rev Plant Biol. 2016 Apr 29;67:703-29. doi: 10.1146/annurev-arplant-043015-112311. Epub 2016 Jan 18.
10
Plant Diseases and Management Approaches in Organic Farming Systems.
Annu Rev Phytopathol. 2016 Aug 4;54:25-54. doi: 10.1146/annurev-phyto-080615-100123. Epub 2016 May 23.

引用本文的文献

1
From sole crops to strip cropping: Decision rules of frontrunner farmers in The Netherlands.
PLoS One. 2025 Jul 24;20(7):e0329133. doi: 10.1371/journal.pone.0329133. eCollection 2025.
2
Horticultural performance and QTL mapping of snap bean ( L.) populations with organic and conventional breeding histories.
Front Plant Sci. 2025 May 19;16:1533039. doi: 10.3389/fpls.2025.1533039. eCollection 2025.
3
Drip fertigation with slurry as a promising tool to reduce nitrogen losses under organic maize.
Sci Rep. 2025 May 15;15(1):16890. doi: 10.1038/s41598-025-01487-0.
4
The Two Dimensions of Nutrition for the Planet: Environment and Health.
Curr Nutr Rep. 2025 Mar 20;14(1):49. doi: 10.1007/s13668-025-00642-3.
7
Impact of organic foods on chronic diseases and health perception: a systematic review of the evidence.
Eur J Clin Nutr. 2025 Mar;79(2):90-103. doi: 10.1038/s41430-024-01505-w. Epub 2024 Sep 11.
8
Landscape features support natural pest control and farm income when pesticide application is reduced.
Nat Commun. 2024 Jun 25;15(1):5384. doi: 10.1038/s41467-024-48311-3.
9
Chinese organic rice transition spatial econometrics empirical analysis.
PLoS One. 2024 Apr 11;19(4):e0297784. doi: 10.1371/journal.pone.0297784. eCollection 2024.
10
Food security and sustainability dimensions of organic farming in the context of India: a comprehensive scientometric review (2010-2023).
Environ Sci Pollut Res Int. 2024 Feb;31(10):14484-14502. doi: 10.1007/s11356-024-31867-4. Epub 2024 Feb 2.

本文引用的文献

1
Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis.
J Appl Ecol. 2014 Jun;51(3):746-755. doi: 10.1111/1365-2664.12219. Epub 2014 Feb 7.
2
Agriculture. Sustainable intensification in agriculture: premises and policies.
Science. 2013 Jul 5;341(6141):33-4. doi: 10.1126/science.1234485.
3
Combined pesticide exposure severely affects individual- and colony-level traits in bees.
Nature. 2012 Nov 1;491(7422):105-8. doi: 10.1038/nature11585. Epub 2012 Oct 21.
4
Comparing the yields of organic and conventional agriculture.
Nature. 2012 May 10;485(7397):229-32. doi: 10.1038/nature11069.
5
A common pesticide decreases foraging success and survival in honey bees.
Science. 2012 Apr 20;336(6079):348-50. doi: 10.1126/science.1215039. Epub 2012 Mar 29.
7
Global food demand and the sustainable intensification of agriculture.
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20260-4. doi: 10.1073/pnas.1116437108. Epub 2011 Nov 21.
8
Solutions for a cultivated planet.
Nature. 2011 Oct 12;478(7369):337-42. doi: 10.1038/nature10452.
9
Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis.
Proc Biol Sci. 2011 Jun 22;278(1713):1894-902. doi: 10.1098/rspb.2010.1923. Epub 2010 Nov 24.
10
Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s.
Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16732-7. doi: 10.1073/pnas.0910275107. Epub 2010 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验