Durruthy-Durruthy Robert, Gottlieb Assaf, Heller Stefan
Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
Nat Protoc. 2015 Mar;10(3):459-474. doi: 10.1038/nprot.2015.022. Epub 2015 Feb 12.
Single-cell gene expression analysis has contributed to a better understanding of the transcriptional heterogeneity in a variety of model systems, including those used in research in developmental, cancer and stem cell biology. Nowadays, technological advances facilitate the generation of large gene expression data sets in high-throughput format. Strategies are needed to pertinently visualize this information in a tissue structure-related context, so as to improve data analysis and aid the drawing of meaningful conclusions. Here we describe an approach that uses spatial properties of the tissue source to enable the reconstruction of hollow sphere-shaped tissues and organs from single-cell gene expression data in 3D space. To demonstrate our method, we used cells of the mouse otocyst and the renal vesicle as examples. This protocol presents a straightforward computational expression analysis workflow, and it is implemented on the MATLAB and R statistical computing and graphics software platforms. Hands-on time for typical experiments can be <1 h using a standard desktop PC or Mac.
单细胞基因表达分析有助于更好地理解各种模型系统中的转录异质性,包括发育生物学、癌症生物学和干细胞生物学研究中使用的模型系统。如今,技术进步促进了高通量格式的大型基因表达数据集的生成。需要一些策略在与组织结构相关的背景下适当地可视化这些信息,以改进数据分析并有助于得出有意义的结论。在这里,我们描述了一种方法,该方法利用组织来源的空间特性,能够从三维空间中的单细胞基因表达数据重建空心球形组织和器官。为了演示我们的方法,我们以小鼠耳囊和肾小泡的细胞为例。该方案提出了一个直接的计算表达分析工作流程,并在MATLAB和R统计计算与图形软件平台上实现。使用标准台式PC或Mac进行典型实验的实际操作时间可以少于1小时。