Suppr超能文献

去甲氧基姜黄素和双去甲氧基姜黄素的氧化转化:产物、形成机制及对人拓扑异构酶IIα的毒害作用

Oxidative Transformation of Demethoxy- and Bisdemethoxycurcumin: Products, Mechanism of Formation, and Poisoning of Human Topoisomerase IIα.

作者信息

Gordon Odaine N, Luis Paula B, Ashley Rachel E, Osheroff Neil, Schneider Claus

机构信息

Departments of †Pharmacology (Clinical Pharmacology), ‡Biochemistry, and §Medicine (Hematology/Oncology), ||Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232, United States.

出版信息

Chem Res Toxicol. 2015 May 18;28(5):989-96. doi: 10.1021/acs.chemrestox.5b00009. Epub 2015 Apr 3.

Abstract

Extracts from the rhizome of the turmeric plant are widely consumed as anti-inflammatory dietary supplements. Turmeric extract contains the three curcuminoids, curcumin (≈80% relative abundance), demethoxycurcumin (DMC; ≈15%), and bisdemethoxycurcumin (BDMC; ≈5%). A distinct feature of pure curcumin is its instability at physiological pH, resulting in rapid autoxidation to a bicyclopentadione within 10-15 min. Here, we describe oxidative transformation of turmeric extract, DMC, and BDMC and the identification of their oxidation products using LC-MS and NMR analyses. DMC autoxidized over the course of 24 h to the expected bicyclopentadione diastereomers. BDMC was resistant to autoxidation, and oxidative transformation required catalysis by horseradish peroxidase and H2O2 or potassium ferricyanide. The product of BDMC oxidation was a stable spiroepoxide that was equivalent to a reaction intermediate in the autoxidation of curcumin. The ability of DMC and BDMC to poison recombinant human topoisomerase IIα was significantly increased in the presence of potassium ferricyanide, indicating that oxidative transformation was required to achieve full DNA cleavage activity. DMC and BDMC are less prone to autoxidation than curcumin and contribute to the enhanced stability of turmeric extract at physiological pH. Their oxidative metabolites may contribute to the biological effects of turmeric extract.

摘要

姜黄植物根茎提取物作为抗炎膳食补充剂被广泛食用。姜黄提取物含有三种姜黄素类化合物,即姜黄素(相对丰度约为80%)、去甲氧基姜黄素(DMC;约15%)和双去甲氧基姜黄素(BDMC;约5%)。纯姜黄素的一个显著特点是其在生理pH值下不稳定,会在10 - 15分钟内迅速自氧化为双环戊二酮。在此,我们描述了姜黄提取物、DMC和BDMC的氧化转化过程,并通过液相色谱 - 质谱联用(LC - MS)和核磁共振(NMR)分析鉴定了它们的氧化产物。DMC在24小时内自氧化为预期的双环戊二酮非对映异构体。BDMC对自氧化具有抗性,其氧化转化需要辣根过氧化物酶和过氧化氢或铁氰化钾催化。BDMC氧化产物是一种稳定的螺环氧,等同于姜黄素自氧化过程中的反应中间体。在铁氰化钾存在下,DMC和BDMC使重组人拓扑异构酶IIα失活的能力显著增强,表明需要氧化转化才能实现完全的DNA切割活性。与姜黄素相比,DMC和BDMC较不易自氧化,这有助于提高姜黄提取物在生理pH值下的稳定性。它们的氧化代谢产物可能对姜黄提取物的生物学效应有贡献。

相似文献

1
Oxidative Transformation of Demethoxy- and Bisdemethoxycurcumin: Products, Mechanism of Formation, and Poisoning of Human Topoisomerase IIα.
Chem Res Toxicol. 2015 May 18;28(5):989-96. doi: 10.1021/acs.chemrestox.5b00009. Epub 2015 Apr 3.
2
Oxidative metabolites of curcumin poison human type II topoisomerases.
Biochemistry. 2013 Jan 8;52(1):221-7. doi: 10.1021/bi3014455. Epub 2012 Dec 26.
3
Mechanistic Differences in the Inhibition of NF-κB by Turmeric and Its Curcuminoid Constituents.
J Agric Food Chem. 2020 Jun 3;68(22):6154-6160. doi: 10.1021/acs.jafc.0c02607. Epub 2020 May 20.
4
Protective Effects of Minor Components of Curcuminoids on Hydrogen Peroxide-Treated Human HaCaT Keratinocytes.
J Agric Food Chem. 2016 May 11;64(18):3598-608. doi: 10.1021/acs.jafc.6b01196. Epub 2016 Apr 28.
8
Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L.
Nat Prod Res. 2017 Dec;31(24):2914-2917. doi: 10.1080/14786419.2017.1299727. Epub 2017 Mar 13.
10
Subjective biosafety assessment of bisdemethoxycurcumin from the rhizomes of .
Toxicol Mech Methods. 2024 Jul;34(6):676-693. doi: 10.1080/15376516.2024.2326000. Epub 2024 Mar 13.

引用本文的文献

1
Effects of combined treatment with extract, curcumin, or bisdemethoxycurcumin and UVA on imiquimod-induced psoriasis-like lesions in BALB/c mice.
Food Sci Biotechnol. 2025 Jul 7;34(14):3385-3394. doi: 10.1007/s10068-025-01940-w. eCollection 2025 Oct.
3
Dry Heating of Curcumin in the Presence of Basic Salts Yields Anti-inflammatory Dimerization Products.
ACS Omega. 2024 Aug 20;9(35):37025-37034. doi: 10.1021/acsomega.4c03257. eCollection 2024 Sep 3.
7
Intracellular Pathways and Mechanisms of Colored Secondary Metabolites in Cancer Therapy.
Int J Mol Sci. 2022 Sep 1;23(17):9943. doi: 10.3390/ijms23179943.
8
Protective Effect of Curcuma Extract in an Model of Retinal Degeneration via Antioxidant Activity and Targeting the SUMOylation.
Oxid Med Cell Longev. 2022 Jul 29;2022:8923615. doi: 10.1155/2022/8923615. eCollection 2022.
9
Bisdemethoxycurcumin attenuates OVA-induced food allergy by inhibiting the MAPK and NF-κB signaling pathways.
Exp Ther Med. 2022 Jun;23(6):401. doi: 10.3892/etm.2022.11328. Epub 2022 Apr 20.
10

本文引用的文献

1
Degradation of Curcumin: From Mechanism to Biological Implications.
J Agric Food Chem. 2015 Sep 9;63(35):7606-14. doi: 10.1021/acs.jafc.5b00244. Epub 2015 Apr 2.
3
Phytochemicals as Anticancer and Chemopreventive Topoisomerase II Poisons.
Phytochem Rev. 2014 Mar 1;13(1):19-35. doi: 10.1007/s11101-013-9291-7.
4
Topoisomerase II and leukemia.
Ann N Y Acad Sci. 2014 Mar;1310(1):98-110. doi: 10.1111/nyas.12358. Epub 2014 Feb 3.
5
The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer.
Pharmacol Rev. 2013 Dec 24;66(1):222-307. doi: 10.1124/pr.110.004044. Print 2014.
6
Facile synthesis of deuterated and [(14) C]labeled analogs of vanillin and curcumin for use as mechanistic and analytical tools.
J Labelled Comp Radiopharm. 2013 Dec;56(14):696-9. doi: 10.1002/jlcr.3102. Epub 2013 Jul 23.
7
The role of cancer stem cells in the anti-carcinogenicity of curcumin.
Mol Nutr Food Res. 2013 Sep;57(9):1630-7. doi: 10.1002/mnfr.201300120. Epub 2013 Jul 31.
9
New perspectives of curcumin in cancer prevention.
Cancer Prev Res (Phila). 2013 May;6(5):387-400. doi: 10.1158/1940-6207.CAPR-12-0410. Epub 2013 Mar 6.
10
Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia.
PLoS One. 2013;8(2):e55934. doi: 10.1371/journal.pone.0055934. Epub 2013 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验