Feller L, Khammissa R A G, Schechter I, Moodley A, Thomadakis G, Lemmer J
Department of Periodontology and Oral Medicine, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa.
Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, 32000 Haifa, Israel.
ScientificWorldJournal. 2015;2015:894123. doi: 10.1155/2015/894123. Epub 2015 Aug 13.
The mechanical stimuli generated by orthodontic forces cause deformation of extracellular matrices and cells, vascular changes, inflammation, and the release of active biological agents generating a complex multifactorial sequence of biological events culminating in bone remodelling enabling orthodontic tooth movement. Orthodontic forces on the teeth generate stresses in periodontal tissues according to a number of variables including the type (continuous, interrupted, or intermittent), magnitude, direction, and frequency of the applied load. Whether the strain is compressive or tensile determines whether bone deposition or bone resorption will occur. The mechanically induced strains mediate structural changes in extracellular matrices and in cells, consequently affecting cellular gene expression and function. In the extracellular matrix, mechanosensing molecules integrated into the structure of various proteins can be activated upon load-induced protein unfolding. These specialized molecules have the capacity to sense and then to convert microenvironmental biomechanical stimuli into intracellular biochemical signals that interact to generate a coordinated tissue response. It is also possible that the applied force may directly cause nuclear deformation with configurational changes in chromatin, thus influencing gene expression. In this review article we summarize the current general concepts of mechanotransduction influencing the remodelling of periodontal tissues thus enabling tooth movement in response to applied orthodontic loads.
正畸力产生的机械刺激会导致细胞外基质和细胞变形、血管变化、炎症以及活性生物因子的释放,从而引发一系列复杂的多因素生物事件,最终导致骨重塑,实现正畸牙齿移动。作用于牙齿的正畸力会根据多种变量在牙周组织中产生应力,这些变量包括施加负荷的类型(持续、间断或间歇)、大小、方向和频率。应变是压缩性还是拉伸性决定了骨沉积或骨吸收是否会发生。机械诱导的应变介导细胞外基质和细胞的结构变化,从而影响细胞基因表达和功能。在细胞外基质中,整合到各种蛋白质结构中的机械传感分子在负荷诱导的蛋白质解折叠时可被激活。这些特殊分子有能力感知并将微环境生物力学刺激转化为细胞内生化信号,这些信号相互作用产生协调的组织反应。施加的力也可能直接导致核变形以及染色质构型变化,从而影响基因表达。在这篇综述文章中,我们总结了当前关于机械转导的一般概念,这些概念影响牙周组织的重塑,从而使牙齿能够响应施加的正畸负荷而移动。