文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

葡萄球菌在钛表面生长的生物膜中的定植:一种用于种植体周围炎的体外“黏膜下”生物膜模型。

Incorporation of staphylococci into titanium-grown biofilms: an in vitro "submucosal" biofilm model for peri-implantitis.

作者信息

Thurnheer Thomas, Belibasakis Georgios N

机构信息

Section of Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland.

出版信息

Clin Oral Implants Res. 2016 Jul;27(7):890-5. doi: 10.1111/clr.12715. Epub 2015 Oct 13.


DOI:10.1111/clr.12715
PMID:26461083
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5057304/
Abstract

OBJECTIVES: Staphylococcus spp. are postulated to play a role in peri-implantitis. This study aimed to develop a "submucosal" in vitro biofilm model, by integrating two staphylococci into its composition. MATERIALS AND METHODS: The standard "subgingival" biofilm contained Actinomyces oris, Fusobacterium nucleatum, Streptococcus oralis, Veillonella dispar, Campylobacter rectus, Prevotella intermedia, Streptococcus anginosus, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, and was further supplemented with Staphyoccous aureus and/or Staphylococcus epidermidis. Biofilms were grown anaerobically on hydroxyapatite or titanium discs and harvested after 64 h for real-time polymerase chain reaction, to determine their composition. Confocal laser scanning microscopy and fluorescence in situ hybridization were used for identifying the two staphylococci within the biofilm. RESULTS: Both staphylococci established within the biofilms when added separately. However, when added together, only S. aureus grew in high numbers, whereas S. epidermidis was reduced almost to the detection limit. Compared to the standard subgingival biofilm, addition of the two staphylococci had no impact on the qualitative or quantitative composition of the biofilm. When grown individually in the biofilm, S. epidermidis and S. aureus formed small distinctive clusters and it was confirmed that S. epidermidis was not able to grow in presence of S. aureus. CONCLUSIONS: Staphyoccous aureus and S. epidermidis can be individually integrated into an oral biofilm grown on titanium, hence establishing a "submucosal" biofilm model for peri-implantitis. This model also revealed that S. aureus outcompetes S. epidermidis when grown together in the biofilm, which may explain the more frequent association of the former with peri-implantitis.

摘要

目的:据推测葡萄球菌属在种植体周围炎中起作用。本研究旨在通过将两种葡萄球菌纳入其组成来建立一种“黏膜下”体外生物膜模型。 材料与方法:标准的“龈下”生物膜包含口腔放线菌、具核梭杆菌、口腔链球菌、殊异韦荣球菌、直肠弯曲菌、中间普氏菌、咽峡炎链球菌、牙龈卟啉单胞菌、福赛坦氏菌和齿垢密螺旋体,并进一步添加金黄色葡萄球菌和/或表皮葡萄球菌。生物膜在羟基磷灰石或钛盘上厌氧培养,64小时后收获用于实时聚合酶链反应,以确定其组成。共聚焦激光扫描显微镜和荧光原位杂交用于鉴定生物膜内的两种葡萄球菌。 结果:两种葡萄球菌分别添加时都能在生物膜中定殖。然而,当一起添加时,只有金黄色葡萄球菌大量生长,而表皮葡萄球菌几乎减少到检测限。与标准龈下生物膜相比,添加两种葡萄球菌对生物膜的定性或定量组成没有影响。当在生物膜中单独生长时,表皮葡萄球菌和金黄色葡萄球菌形成小的独特簇,并且证实表皮葡萄球菌在金黄色葡萄球菌存在时不能生长。 结论:金黄色葡萄球菌和表皮葡萄球菌可以分别整合到在钛上生长的口腔生物膜中,从而建立种植体周围炎的“黏膜下”生物膜模型。该模型还显示,当在生物膜中一起生长时,金黄色葡萄球菌比表皮葡萄球菌更具竞争力,这可能解释了前者与种植体周围炎更频繁的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0f8/5057304/34c908fa9b17/CLR-27-890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0f8/5057304/4c28ad57f007/CLR-27-890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0f8/5057304/34c908fa9b17/CLR-27-890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0f8/5057304/4c28ad57f007/CLR-27-890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0f8/5057304/34c908fa9b17/CLR-27-890-g002.jpg

相似文献

[1]
Incorporation of staphylococci into titanium-grown biofilms: an in vitro "submucosal" biofilm model for peri-implantitis.

Clin Oral Implants Res. 2016-7

[2]
Species and Subspecies Differentially Affect the Composition and Architecture of Supra- and Subgingival Biofilms Models.

Front Microbiol. 2019-7-30

[3]
Colonisation of gingival epithelia by subgingival biofilms in vitro: role of "red complex" bacteria.

Arch Oral Biol. 2014-9

[4]
Impact of early colonizers on in vitro subgingival biofilm formation.

PLoS One. 2013-12-5

[5]
Validation of a quantitative real-time PCR assay and comparison with fluorescence microscopy and selective agar plate counting for species-specific quantification of an in vitro subgingival biofilm model.

J Periodontal Res. 2012-12-30

[6]
Endodontic-Like Oral Biofilms as Models for Multispecies Interactions in Endodontic Diseases.

Microorganisms. 2020-5-6

[7]
Microbial dynamics during conversion from supragingival to subgingival biofilms in an in vitro model.

Mol Oral Microbiol. 2016-4

[8]
Shift of microbial composition of peri-implantitis-associated oral biofilm as revealed by 16S rRNA gene cloning.

J Med Microbiol. 2018-3

[9]
Integration of non-oral bacteria into in vitro oral biofilms.

Virulence. 2015

[10]
Antibiofilm efficacies of cold plasma and er: YAG laser on biofilm on titanium for nonsurgical treatment of peri-implantitis.

Niger J Clin Pract. 2018-6

引用本文的文献

[1]
Protocol for analyzing the function of the type VI secretion system of the oral symbiont Aggregatibacter aphrophilus in targeting pathobionts.

STAR Protoc. 2024-12-20

[2]
The Oral Microbiome of Peri-Implant Health and Disease: A Narrative Review.

Dent J (Basel). 2024-9-24

[3]
Application of Fluorescence In Situ Hybridization (FISH) in Oral Microbial Detection.

Pathogens. 2022-12-1

[4]
Comparison of Different Chemical and Mechanical Modalities for Implant Surface Decontamination: Activity against Biofilm and Influence on Cellular Regrowth-An Study.

Front Surg. 2022-9-30

[5]
Electrophoretic-deposited MXene titanium coatings in regulating bacteria and cell response for peri-implantitis.

Front Chem. 2022-9-29

[6]
Effect of Non-Thermal Plasma Treatment of Contaminated Zirconia Surface on Adhesion and Osteoblast Viability.

Materials (Basel). 2022-8-3

[7]
Disinfection and Biocompatibility of Titanium Surfaces Treated with Glycine Powder Airflow and Triple Antibiotic Mixture: An In Vitro Study.

Materials (Basel). 2022-7-12

[8]
Microbiological Aspects of Root Canal Infections and Disinfection Strategies: An Update Review on the Current Knowledge and Challenges.

Front Oral Health. 2021-6-25

[9]
Low-Level Laser and Antimicrobial Photodynamic Therapy Reduce Peri-implantitis-related Microorganisms Grown In Vitro.

Eur J Dent. 2022-2

[10]
The Synergistic Effect of Nicotine and on Peri-Implant Infections.

Front Bioeng Biotechnol. 2021-9-13

本文引用的文献

[1]
Quantitative proteomics reveal distinct protein regulations caused by Aggregatibacter actinomycetemcomitans within subgingival biofilms.

PLoS One. 2015-3-10

[2]
Microbiome of peri-implant infections: lessons from conventional, molecular and metagenomic analyses.

Virulence. 2015

[3]
Integration of non-oral bacteria into in vitro oral biofilms.

Virulence. 2015

[4]
Periodontal and peri-implant microbiota in patients with healthy and inflamed periodontal and peri-implant tissues.

Clin Oral Implants Res. 2016-1

[5]
Microbiological diversity of peri-implantitis biofilms.

Adv Exp Med Biol. 2015

[6]
Peri-implant infections of oral biofilm etiology.

Adv Exp Med Biol. 2015

[7]
Role of Porphyromonas gingivalis gingipains in multi-species biofilm formation.

BMC Microbiol. 2014-10-2

[8]
Colonisation of gingival epithelia by subgingival biofilms in vitro: role of "red complex" bacteria.

Arch Oral Biol. 2014-9

[9]
Expression and regulation of triggering receptor expressed on myeloid cells 1 in periodontal diseases.

Clin Exp Immunol. 2014-10

[10]
Impact of early colonizers on in vitro subgingival biofilm formation.

PLoS One. 2013-12-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索