Suppr超能文献

使用释放一氧化氮的壳寡糖破坏和根除铜绿假单胞菌生物膜

Disruption and eradication of P. aeruginosa biofilms using nitric oxide-releasing chitosan oligosaccharides.

作者信息

Reighard Katelyn P, Hill David B, Dixon Graham A, Worley Brittany V, Schoenfisch Mark H

机构信息

a Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.

b The Marsico Lung Institute , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.

出版信息

Biofouling. 2015;31(9-10):775-87. doi: 10.1080/08927014.2015.1107548.

Abstract

Biofilm disruption and eradication were investigated as a function of nitric oxide- (NO) releasing chitosan oligosaccharide dose and the results compared with control (i.e., non-NO-releasing) chitosan oligosaccharides and tobramycin. Quantification of biofilm expansion/contraction and multiple-particle tracking microrheology were used to assess the structural integrity of the biofilm before and after antibacterial treatment. While tobramycin had no effect on the physical properties of the biofilm, NO-releasing chitosan oligosaccharides exhibited dose-dependent behavior with biofilm degradation. Control chitosan oligosaccharides increased biofilm elasticity, indicating that the scaffold may mitigate the biofilm disrupting power of nitric oxide somewhat. The results from this study indicate that nitric oxide-releasing chitosan oligosaccharides act as dual-action therapeutics capable of eradicating and physically disrupting P. aeruginosa biofilms.

摘要

研究了释放一氧化氮(NO)的壳寡糖剂量对生物膜破坏和根除的作用,并将结果与对照(即不释放NO的)壳寡糖和妥布霉素进行比较。通过生物膜扩张/收缩的定量分析和多粒子跟踪微流变学来评估抗菌处理前后生物膜的结构完整性。虽然妥布霉素对生物膜的物理性质没有影响,但释放NO的壳寡糖表现出与生物膜降解相关的剂量依赖性行为。对照壳寡糖增加了生物膜的弹性,表明该支架可能在一定程度上减轻一氧化氮对生物膜的破坏作用。本研究结果表明,释放一氧化氮的壳寡糖作为双作用疗法,能够根除并物理破坏铜绿假单胞菌生物膜。

相似文献

2
Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions.
Antimicrob Agents Chemother. 2015 Oct;59(10):6506-13. doi: 10.1128/AAC.01208-15. Epub 2015 Aug 3.
3
Nitric oxide-releasing chitosan oligosaccharides as antibacterial agents.
Biomaterials. 2014 Feb;35(5):1716-24. doi: 10.1016/j.biomaterials.2013.11.015. Epub 2013 Nov 20.
4
Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles.
ACS Appl Mater Interfaces. 2013 Oct 9;5(19):9322-9. doi: 10.1021/am402618w. Epub 2013 Sep 5.
5
S-Nitrosothiol-modified nitric oxide-releasing chitosan oligosaccharides as antibacterial agents.
Acta Biomater. 2015 Jan;12:62-69. doi: 10.1016/j.actbio.2014.10.028. Epub 2014 Oct 25.
8
Biofilm Eradication via Nitric Oxide-Releasing Cyclodextrins.
ACS Infect Dis. 2020 Jul 10;6(7):1940-1950. doi: 10.1021/acsinfecdis.0c00246. Epub 2020 Jun 23.
9
Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa.
J Bacteriol. 2006 Nov;188(21):7344-53. doi: 10.1128/JB.00779-06.
10

引用本文的文献

1
Harnessing the Power of Our Immune System: The Antimicrobial and Antibiofilm Properties of Nitric Oxide.
Microorganisms. 2024 Dec 10;12(12):2543. doi: 10.3390/microorganisms12122543.
2
Biopolymeric Inhalable Dry Powders for Pulmonary Drug Delivery.
Pharmaceuticals (Basel). 2024 Dec 4;17(12):1628. doi: 10.3390/ph17121628.
5
Nitric Oxide-Induced Morphological Changes to Bacteria.
ACS Infect Dis. 2023 Nov 10;9(11):2316-2324. doi: 10.1021/acsinfecdis.3c00415. Epub 2023 Oct 13.
6
Altering the viscoelastic properties of mucus-grown biofilms affects antibiotic susceptibility.
Biofilm. 2023 Jan 21;5:100104. doi: 10.1016/j.bioflm.2023.100104. eCollection 2023 Dec.
7
Antibacterial gas therapy: Strategies, advances, and prospects.
Bioact Mater. 2022 Nov 11;23:129-155. doi: 10.1016/j.bioactmat.2022.10.008. eCollection 2023 May.
8
Chitosan Nanoparticle Encapsulation of Antibacterial Essential Oils.
Micromachines (Basel). 2022 Aug 6;13(8):1265. doi: 10.3390/mi13081265.
10
Therapeutic Delivery of Nitric Oxide Utilizing Saccharide-Based Materials.
ACS Appl Mater Interfaces. 2021 Nov 10;13(44):52250-52273. doi: 10.1021/acsami.1c10964. Epub 2021 Oct 29.

本文引用的文献

2
Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.
mBio. 2014 Aug 5;5(4):e01536-14. doi: 10.1128/mBio.01536-14.
3
Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms.
Trends Microbiol. 2014 Jun;22(6):326-33. doi: 10.1016/j.tim.2014.02.001. Epub 2014 Mar 2.
4
A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease.
PLoS One. 2014 Feb 18;9(2):e87681. doi: 10.1371/journal.pone.0087681. eCollection 2014.
5
Nitric oxide-releasing chitosan oligosaccharides as antibacterial agents.
Biomaterials. 2014 Feb;35(5):1716-24. doi: 10.1016/j.biomaterials.2013.11.015. Epub 2013 Nov 20.
6
Nitric oxide-releasing amphiphilic poly(amidoamine) (PAMAM) dendrimers as antibacterial agents.
Biomacromolecules. 2013 Oct 14;14(10):3589-98. doi: 10.1021/bm400961r. Epub 2013 Sep 6.
7
The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin.
Environ Microbiol. 2013 Oct;15(10):2865-78. doi: 10.1111/1462-2920.12155. Epub 2013 Jun 10.
8
Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health.
Am J Respir Crit Care Med. 2013 Apr 1;187(7):680-9. doi: 10.1164/rccm.201207-1160oe.
9
Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms.
Antimicrob Agents Chemother. 2013 May;57(5):2352-61. doi: 10.1128/AAC.00001-13. Epub 2013 Mar 11.
10
Treatment of lung infection in patients with cystic fibrosis: current and future strategies.
J Cyst Fibros. 2012 Dec;11(6):461-79. doi: 10.1016/j.jcf.2012.10.004. Epub 2012 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验