Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA.
Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA.
Nat Nanotechnol. 2016 May;11(5):426-31. doi: 10.1038/nnano.2015.322. Epub 2016 Feb 1.
Bernal (AB)-stacked bilayer graphene (BLG) is a semiconductor whose bandgap can be tuned by a transverse electric field, making it a unique material for a number of electronic and photonic devices. A scalable approach to synthesize high-quality BLG is therefore critical, which requires minimal crystalline defects in both graphene layers and maximal area of Bernal stacking, which is necessary for bandgap tunability. Here we demonstrate that in an oxygen-activated chemical vapour deposition (CVD) process, half-millimetre size, Bernal-stacked BLG single crystals can be synthesized on Cu. Besides the traditional 'surface-limited' growth mechanism for SLG (1st layer), we discovered new microscopic steps governing the growth of the 2nd graphene layer below the 1st layer as the diffusion of carbon atoms through the Cu bulk after complete dehydrogenation of hydrocarbon molecules on the Cu surface, which does not occur in the absence of oxygen. Moreover, we found that the efficient diffusion of the carbon atoms present at the interface between Cu and the 1st graphene layer further facilitates growth of large domains of the 2nd layer. The CVD BLG has superior electrical quality, with a device on/off ratio greater than 10(4), and a tunable bandgap up to ∼100 meV at a displacement field of 0.9 V nm(-1).
AB 堆叠双层石墨烯(BLG)是一种半导体,其带隙可以通过横向电场进行调节,使其成为许多电子和光子器件的独特材料。因此,开发一种可扩展的方法来合成高质量的 BLG 至关重要,这需要在两个石墨烯层中最小化晶体缺陷,并最大化 Bernal 堆叠的面积,这对于带隙可调性是必要的。在这里,我们证明在氧激活的化学气相沉积(CVD)过程中,可以在 Cu 上合成半毫米大小的 Bernal 堆叠 BLG 单晶。除了传统的 SLG(第 1 层)的“表面限制”生长机制外,我们发现了新的微观步骤,控制着第 1 层下方的第 2 个石墨烯层的生长,这是由于碳原子在 Cu 表面上的烃分子完全脱氢后通过 Cu 体扩散,而在没有氧气的情况下不会发生这种情况。此外,我们发现存在于 Cu 和第 1 个石墨烯层之间的界面处的碳原子的有效扩散进一步促进了第 2 层的大畴生长。CVD BLG 具有优异的电学质量,器件的开/关比大于 10^4,在 0.9 V nm^-1 的位移场下可调谐带隙高达约 100 meV。