Suppr超能文献

深亚波长 regime 下平行结构间的近场辐射热传递。

Near-field radiative heat transfer between parallel structures in the deep subwavelength regime.

机构信息

School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA.

Department of Electrical Engineering, Columbia University, New York, New York 10027, USA.

出版信息

Nat Nanotechnol. 2016 Jun;11(6):515-519. doi: 10.1038/nnano.2016.20. Epub 2016 Mar 7.

Abstract

Thermal radiation between parallel objects separated by deep subwavelength distances and subject to large thermal gradients (>100 K) can reach very high magnitudes, while being concentrated on a narrow frequency distribution. These unique characteristics could enable breakthrough technologies for thermal transport control and electricity generation (for example, by radiating heat exactly at the bandgap frequency of a photovoltaic cell). However, thermal transport in this regime has never been achieved experimentally due to the difficulty of maintaining large thermal gradients over nanometre-scale distances while avoiding other heat transfer mechanisms, namely conduction. Here, we show near-field radiative heat transfer between parallel SiC nanobeams in the deep subwavelength regime. The distance between the beams is controlled by a high-precision micro-electromechanical system (MEMS). We exploit the mechanical stability of nanobeams under high tensile stress to minimize thermal buckling effects, therefore keeping control of the nanometre-scale separation even at large thermal gradients. We achieve an enhancement of heat transfer of almost two orders of magnitude with respect to the far-field limit (corresponding to a 42 nm separation) and show that we can maintain a temperature gradient of 260 K between the cold and hot surfaces at ∼100 nm distance.

摘要

在深亚波长距离和大温度梯度 (>100 K) 下分离的平行物体之间的热辐射可以达到非常高的水平,同时集中在一个狭窄的频率分布上。这些独特的特性可以为热输运控制和发电技术带来突破(例如,通过在光伏电池的带隙频率处辐射热量)。然而,由于在避免其他传热机制(即传导)的同时,很难在纳米尺度距离上保持大的温度梯度,因此,这种情况下的热输运在实验上从未实现过。在这里,我们展示了在深亚波长范围内平行 SiC 纳米梁之间的近场辐射热传递。梁之间的距离由高精度微机电系统 (MEMS) 控制。我们利用纳米梁在高拉伸应力下的机械稳定性来最小化热屈曲效应,从而即使在大温度梯度下也能保持纳米尺度的分离。与远场极限(对应于 42nm 的分离)相比,我们实现了近场辐射热传递的几乎两个数量级的增强,并表明我们可以在约 100nm 的距离内保持冷、热表面之间 260K 的温度梯度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验