Mallat Stéphane
École Normale Supérieure, CNRS, PSL, 45 rue d'Ulm, Paris, France
Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150203. doi: 10.1098/rsta.2015.0203.
Deep convolutional networks provide state-of-the-art classifications and regressions results over many high-dimensional problems. We review their architecture, which scatters data with a cascade of linear filter weights and nonlinearities. A mathematical framework is introduced to analyse their properties. Computations of invariants involve multiscale contractions with wavelets, the linearization of hierarchical symmetries and sparse separations. Applications are discussed.
深度卷积网络在许多高维问题上提供了最先进的分类和回归结果。我们回顾了它们的架构,该架构通过一系列线性滤波器权重和非线性函数来分散数据。引入了一个数学框架来分析它们的属性。不变量的计算涉及小波的多尺度收缩、层次对称性的线性化和稀疏分离。文中还讨论了相关应用。