Suppr超能文献

根据扩散张量成像的各向异性参数评估乳腺癌的检测、鉴别及风险

Assessing Detection, Discrimination, and Risk of Breast Cancer According to Anisotropy Parameters of Diffusion Tensor Imaging.

作者信息

Jiang Ruisheng, Zeng Xiangmin, Sun Shihang, Ma Zhijun, Wang Ximing

机构信息

Diagnostic Room of Computer Tomography, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, China (mainland).

Department of Computer Tomography and Magnetic Resonance Imaging, Weifang Medical College Affiliated Yidu Central Hospital, Qingzhou, Shandong, China (mainland).

出版信息

Med Sci Monit. 2016 Apr 20;22:1318-28. doi: 10.12659/msm.895755.

Abstract

BACKGROUND The aim of this study was to investigate whether the anisotropy parameters are helpful in the detection and discrimination of breast cancers, and to determine its value in predicting the risk of cancers. MATERIAL AND METHODS There were 56 patients with 56 lesions (34 malignant, 22 benign) included in the study. DTI was performed in every patient and apparent diffusion coefficient (ADC), fractional anisotropy (FA), and eigenvalues E1, E2, and E3 were measured in every lesion and the normal breast tissue. RESULTS ADC, FA, and eigenvalues of E1, E2, E3, and E1-E3 in breast cancers were all significantly lower than in normal tissue (P<0.001 for all) with mean reduction of (32 ± 17)%, (24 ± 13)%, (33 ± 19)%, (32 ± 17)%, (31 ± 18)%, and (37 ± 20)% for ADC, FA, E1, E2, E3, and E1-E3, respectively. These parameters were also statistically lower in cancers than in benign lesions (P<0.01 for all), except FA (P>0.05). ADC, E1, E2, and E3 were very similar in discriminating breast cancers and benign lesions, with area under the curve (AUC) 0.885-0.898, sensitivity 73.5-85.3%, and specificity 90.9-100%. CONCLUSIONS ADC, E1, E2, E3, and E1-E3 are much lower in breast cancers than in normal tissue and benign lesions. The reduction of ADC, E1, E2, E3, and E1-E3 of a mass in the breast is highly associated with the risk of breast cancer, but the FA has no utility in breast cancer risk prediction.

摘要

背景 本研究的目的是调查各向异性参数是否有助于乳腺癌的检测和鉴别,并确定其在预测癌症风险中的价值。材料与方法 本研究纳入了56例患者的56个病灶(34个恶性,22个良性)。对每位患者进行扩散张量成像(DTI),并测量每个病灶及正常乳腺组织的表观扩散系数(ADC)、分数各向异性(FA)以及本征值E1、E2和E3。结果 乳腺癌的ADC、FA以及E1、E2、E3和E1-E3的本征值均显著低于正常组织(均P<0.001),ADC、FA、E1、E2、E3和E1-E3的平均降低幅度分别为(32±17)%、(24±13)%、(33±19)%、(32±17)%、(31±18)%和(37±20)%。除FA外(P>0.05),这些参数在癌症中也显著低于良性病灶(均P<0.01)。ADC、E1、E2和E3在鉴别乳腺癌和良性病灶方面非常相似,曲线下面积(AUC)为0.885-0.898,敏感性为73.5-85.3%,特异性为90.9-100%。结论 乳腺癌中的ADC、E1、E2、E3和E1-E3远低于正常组织和良性病灶。乳腺肿块的ADC、E1、E2、E3和E1-E3降低与乳腺癌风险高度相关,但FA在乳腺癌风险预测中无作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3514/4841361/d6a6a4f4768c/medscimonit-22-1318-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验