Suppr超能文献

光学相干断层扫描体积数据自动分割软件的性能评估

Performance evaluation of automated segmentation software on optical coherence tomography volume data.

作者信息

Tian Jing, Varga Boglarka, Tatrai Erika, Fanni Palya, Somfai Gabor Mark, Smiddy William E, Debuc Delia Cabrera

机构信息

Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL 33136, United States.

Semmelweis University, 39 Maria Street, 1085, Budapest, Hungary.

出版信息

J Biophotonics. 2016 May;9(5):478-89. doi: 10.1002/jbio.201500239. Epub 2016 Mar 11.

Abstract

Over the past two decades a significant number of OCT segmentation approaches have been proposed in the literature. Each methodology has been conceived for and/or evaluated using specific datasets that do not reflect the complexities of the majority of widely available retinal features observed in clinical settings. In addition, there does not exist an appropriate OCT dataset with ground truth that reflects the realities of everyday retinal features observed in clinical settings. While the need for unbiased performance evaluation of automated segmentation algorithms is obvious, the validation process of segmentation algorithms have been usually performed by comparing with manual labelings from each study and there has been a lack of common ground truth. Therefore, a performance comparison of different algorithms using the same ground truth has never been performed. This paper reviews research-oriented tools for automated segmentation of the retinal tissue on OCT images. It also evaluates and compares the performance of these software tools with a common ground truth.

摘要

在过去二十年里,文献中已经提出了大量的光学相干断层扫描(OCT)分割方法。每种方法都是针对特定数据集设计的和/或使用特定数据集进行评估的,而这些数据集并不能反映临床环境中观察到的大多数广泛存在的视网膜特征的复杂性。此外,不存在一个带有反映临床环境中日常视网膜特征实际情况的真实标注的合适OCT数据集。虽然对自动分割算法进行无偏性能评估的需求显而易见,但分割算法的验证过程通常是通过与每项研究中的手动标注进行比较来完成的,并且一直缺乏共同的真实标注。因此,从未使用相同的真实标注对不同算法进行过性能比较。本文回顾了用于OCT图像上视网膜组织自动分割的面向研究的工具。它还使用共同的真实标注来评估和比较这些软件工具的性能。

相似文献

1
Performance evaluation of automated segmentation software on optical coherence tomography volume data.
J Biophotonics. 2016 May;9(5):478-89. doi: 10.1002/jbio.201500239. Epub 2016 Mar 11.
2
Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning.
Transl Vis Sci Technol. 2020 Oct 13;9(11):12. doi: 10.1167/tvst.9.11.12. eCollection 2020 Oct.
3
Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
Comput Methods Programs Biomed. 2019 Jul;176:69-80. doi: 10.1016/j.cmpb.2019.04.027. Epub 2019 Apr 24.
6
Impact of segmentation density on spectral domain optical coherence tomography assessment in Stargardt disease.
Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):549-556. doi: 10.1007/s00417-018-04229-3. Epub 2019 Jan 6.
8
Choroidal thickness maps from spectral domain and swept source optical coherence tomography: algorithmic versus ground truth annotation.
Br J Ophthalmol. 2016 Oct;100(10):1372-6. doi: 10.1136/bjophthalmol-2015-307985. Epub 2016 Jan 14.

引用本文的文献

3
Novel Method to Measure Volumes of Retinal Specific Entities.
J Clin Med. 2024 Aug 7;13(16):4620. doi: 10.3390/jcm13164620.
4
Annotation-efficient learning for OCT segmentation.
Biomed Opt Express. 2023 Jun 13;14(7):3294-3307. doi: 10.1364/BOE.486276. eCollection 2023 Jul 1.
5
Exploiting multi-granularity visual features for retinal layer segmentation in human eyes.
Front Bioeng Biotechnol. 2023 Jun 1;11:1191803. doi: 10.3389/fbioe.2023.1191803. eCollection 2023.
6
Longitudinal deep network for consistent OCT layer segmentation.
Biomed Opt Express. 2023 Apr 3;14(5):1874-1893. doi: 10.1364/BOE.487518. eCollection 2023 May 1.
9
Recent developments on computer aided systems for diagnosis of diabetic retinopathy: a review.
Multimed Tools Appl. 2023;82(10):14471-14525. doi: 10.1007/s11042-022-13841-9. Epub 2022 Sep 24.

本文引用的文献

1
A review of optical coherence tomography angiography (OCTA).
Int J Retina Vitreous. 2015 Apr 15;1:5. doi: 10.1186/s40942-015-0005-8. eCollection 2015.
2
Real-Time Automatic Segmentation of Optical Coherence Tomography Volume Data of the Macular Region.
PLoS One. 2015 Aug 10;10(8):e0133908. doi: 10.1371/journal.pone.0133908. eCollection 2015.
4
5
Optical coherence tomographic correlates of angiographic subtypes of occult choroidal neovascularization.
Invest Ophthalmol Vis Sci. 2013 Dec 9;54(13):8020-6. doi: 10.1167/iovs.13-12302.
6
Automated drusen segmentation and quantification in SD-OCT images.
Med Image Anal. 2013 Dec;17(8):1058-72. doi: 10.1016/j.media.2013.06.003. Epub 2013 Jul 2.
7
Retinal layer segmentation of macular OCT images using boundary classification.
Biomed Opt Express. 2013 Jun 14;4(7):1133-52. doi: 10.1364/BOE.4.001133. Print 2013 Jul 1.
8
Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints.
IEEE Trans Med Imaging. 2013 Mar;32(3):531-43. doi: 10.1109/TMI.2012.2225152. Epub 2012 Oct 18.
9
Optical coherence tomography: from physical principles to clinical applications.
Arch Cardiovasc Dis. 2012 Oct;105(10):529-34. doi: 10.1016/j.acvd.2012.02.012. Epub 2012 Jul 17.
10
The shape of the ganglion cell plus inner plexiform layers of the normal human macula.
Invest Ophthalmol Vis Sci. 2012 Oct 30;53(11):7412-20. doi: 10.1167/iovs.12-10515.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验