Barri Alessandro, Wang Yun, Hansel David, Mongillo Gianluigi
Unité d'Imagerie Dynamique du Neurone , Institut Pasteur, Paris, France.
Caritas St. Elizabeth's Center, Tufts University , Boston, MA, USA.
eNeuro. 2016 May 13;3(2). doi: 10.1523/ENEURO.0113-15.2016. eCollection 2016 Mar-Apr.
The dependence of the synaptic responses on the history of activation and their large variability are both distinctive features of repetitive transmission at chemical synapses. Quantitative investigations have mostly focused on trial-averaged responses to characterize dynamic aspects of the transmission--thus disregarding variability--or on the fluctuations of the responses in steady conditions to characterize variability--thus disregarding dynamics. We present a statistically principled framework to quantify the dynamics of the probability distribution of synaptic responses under arbitrary patterns of activation. This is achieved by constructing a generative model of repetitive transmission, which includes an explicit description of the sources of stochasticity present in the process. The underlying parameters are then selected via an expectation-maximization algorithm that is exact for a large class of models of synaptic transmission, so as to maximize the likelihood of the observed responses. The method exploits the information contained in the correlation between responses to produce highly accurate estimates of both quantal and dynamic parameters from the same recordings. The method also provides important conceptual and technical advances over existing state-of-the-art techniques. In particular, the repetition of the same stimulation in identical conditions becomes unnecessary. This paves the way to the design of optimal protocols to estimate synaptic parameters, to the quantitative comparison of synaptic models over benchmark datasets, and, most importantly, to the study of repetitive transmission under physiologically relevant patterns of synaptic activation.
突触反应对激活历史的依赖性及其巨大变异性都是化学突触重复传递的显著特征。定量研究大多集中在对试验平均反应进行分析,以表征传递的动态方面——从而忽略了变异性——或者集中在稳定条件下反应的波动上,以表征变异性——从而忽略了动态。我们提出了一个基于统计学原理的框架,用于量化在任意激活模式下突触反应概率分布的动态。这是通过构建一个重复传递的生成模型来实现的,该模型明确描述了过程中存在的随机性来源。然后通过期望最大化算法选择潜在参数,该算法对于一大类突触传递模型是精确的,以便最大化观察到的反应的似然性。该方法利用反应之间相关性中包含的信息,从相同记录中对量子参数和动态参数进行高度准确的估计。与现有的先进技术相比,该方法还提供了重要的概念和技术进步。特别是,在相同条件下重复相同刺激变得不再必要。这为估计突触参数的最优方案设计、在基准数据集上对突触模型进行定量比较,以及最重要的是,在生理相关的突触激活模式下研究重复传递铺平了道路。