Suppr超能文献

一种用于对MeRIP-seq数据中的m(6)A甲基化峰进行聚类的分层模型。

A hierarchical model for clustering m(6)A methylation peaks in MeRIP-seq data.

作者信息

Cui Xiaodong, Meng Jia, Zhang Shaowu, Rao Manjeet K, Chen Yidong, Huang Yufei

机构信息

Department of Electrical and Computer Engineering, University of Texas, San Antonio, TX, 78249, USA.

Department of Biological Science, Xi'an Jiaotong-liverpool University, Suzhou, 215123, China.

出版信息

BMC Genomics. 2016 Aug 22;17 Suppl 7(Suppl 7):520. doi: 10.1186/s12864-016-2913-x.

Abstract

BACKGROUND

The recent advent of the state-of-art high throughput sequencing technology, known as Methylated RNA Immunoprecipitation combined with RNA sequencing (MeRIP-seq) revolutionizes the area of mRNA epigenetics and enables the biologists and biomedical researchers to have a global view of N (6)-Methyladenosine (m(6)A) on transcriptome. Yet there is a significant need for new computation tools for processing and analysing MeRIP-Seq data to gain a further insight into the function and m(6)A mRNA methylation.

RESULTS

We developed a novel algorithm and an open source R package ( http://compgenomics.utsa.edu/metcluster ) for uncovering the potential types of m(6)A methylation by clustering the degree of m(6)A methylation peaks in MeRIP-Seq data. This algorithm utilizes a hierarchical graphical model to model the reads account variance and the underlying clusters of the methylation peaks. Rigorous statistical inference is performed to estimate the model parameter and detect the number of clusters. MeTCluster is evaluated on both simulated and real MeRIP-seq datasets and the results demonstrate its high accuracy in characterizing the clusters of methylation peaks. Our algorithm was applied to two different sets of real MeRIP-seq datasets and reveals a novel pattern that methylation peaks with less peak enrichment tend to clustered in the 5' end of both in both mRNAs and lncRNAs, whereas those with higher peak enrichment are more likely to be distributed in CDS and towards the 3'end of mRNAs and lncRNAs. This result might suggest that m(6)A's functions could be location specific.

CONCLUSIONS

In this paper, a novel hierarchical graphical model based algorithm was developed for clustering the enrichment of methylation peaks in MeRIP-seq data. MeTCluster is written in R and is publicly available.

摘要

背景

最新的先进高通量测序技术,即甲基化RNA免疫沉淀结合RNA测序(MeRIP-seq),彻底改变了mRNA表观遗传学领域,使生物学家和生物医学研究人员能够在转录组水平上全面了解N(6)-甲基腺苷(m(6)A)。然而,迫切需要新的计算工具来处理和分析MeRIP-Seq数据,以便更深入地了解m(6)A mRNA甲基化的功能。

结果

我们开发了一种新颖的算法和一个开源R包(http://compgenomics.utsa.edu/metcluster),用于通过对MeRIP-Seq数据中m(6)A甲基化峰的程度进行聚类,来揭示m(6)A甲基化的潜在类型。该算法利用分层图形模型来模拟读取计数方差和甲基化峰的潜在聚类。进行了严格的统计推断以估计模型参数并检测聚类数量。在模拟和真实的MeRIP-seq数据集上对MeTCluster进行了评估,结果证明了其在表征甲基化峰聚类方面的高精度。我们的算法应用于两组不同的真实MeRIP-seq数据集,揭示了一种新的模式:峰富集度较低的甲基化峰倾向于在mRNA和lncRNA的5'端聚类,而峰富集度较高的甲基化峰更可能分布在CDS中,并朝向mRNA和lncRNA的3'端。这一结果可能表明m(6)A的功能可能具有位置特异性。

结论

本文开发了一种基于分层图形模型的新颖算法,用于对MeRIP-seq数据中甲基化峰的富集进行聚类。MeTCluster用R编写并可公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c54/5001242/042022a1fc5b/12864_2016_2913_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验