Shrestha Utsab R, Perera Suchithranga M D C, Bhowmik Debsindhu, Chawla Udeep, Mamontov Eugene, Brown Michael F, Chu Xiang-Qiang
Department of Physics and Astronomy, Wayne State University , Detroit, Michigan 48201, United States.
Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States.
J Phys Chem Lett. 2016 Oct 20;7(20):4130-4136. doi: 10.1021/acs.jpclett.6b01632. Epub 2016 Oct 4.
Light activation of the visual G-protein-coupled receptor (GPCR) rhodopsin leads to significant structural fluctuations of the protein embedded within the membrane yielding the activation of cognate G-protein (transducin), which initiates biological signaling. Here, we report a quasi-elastic neutron scattering study of the activation of rhodopsin as a GPCR prototype. Our results reveal a broadly distributed relaxation of hydrogen atom dynamics of rhodopsin on a picosecond-nanosecond time scale, crucial for protein function, as only observed for globular proteins previously. Interestingly, the results suggest significant differences in the intrinsic protein dynamics of the dark-state rhodopsin versus the ligand-free apoprotein, opsin. These differences can be attributed to the influence of the covalently bound retinal ligand. Furthermore, an idea of the generic free-energy landscape is used to explain the GPCR dynamics of ligand-binding and ligand-free protein conformations, which can be further applied to other GPCR systems.
视觉G蛋白偶联受体(GPCR)视紫红质的光激活会导致嵌入膜内的蛋白质发生显著的结构波动,从而激活同源G蛋白(转导素),启动生物信号传导。在此,我们报告了对视紫红质作为GPCR原型激活的准弹性中子散射研究。我们的结果揭示了视紫红质氢原子动力学在皮秒至纳秒时间尺度上的广泛分布弛豫,这对蛋白质功能至关重要,此前仅在球状蛋白质中观察到。有趣的是,结果表明暗态视紫红质与无配体脱辅基蛋白视蛋白的内在蛋白质动力学存在显著差异。这些差异可归因于共价结合的视黄醛配体的影响。此外,通用自由能景观的概念被用于解释配体结合和无配体蛋白质构象的GPCR动力学,这可进一步应用于其他GPCR系统。