Shekhar-Guturja Tanvi, Tebung Walters Aji, Mount Harley, Liu Ningning, Köhler Julia R, Whiteway Malcolm, Cowen Leah E
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada.
Antimicrob Agents Chemother. 2016 Nov 21;60(12):7468-7480. doi: 10.1128/AAC.01959-16. Print 2016 Dec.
Invasive fungal infections are a leading cause of human mortality. Effective treatment is hindered by the rapid emergence of resistance to the limited number of antifungal drugs, demanding new strategies to treat life-threatening fungal infections. Here, we explore a powerful strategy to enhance antifungal efficacy against leading human fungal pathogens by using the natural product beauvericin. We found that beauvericin potentiates the activity of azole antifungals against azole-resistant Candida isolates via inhibition of multidrug efflux and that beauvericin itself is effluxed via Yor1. As observed in Saccharomyces cerevisiae, we determined that beauvericin inhibits TOR signaling in Candida albicans To further characterize beauvericin activity in C. albicans, we leveraged genome sequencing of beauvericin-resistant mutants. Resistance was conferred by mutations in transcription factor genes TAC1, a key regulator of multidrug efflux, and ZCF29, which was uncharacterized. Transcriptional profiling and chromatin immunoprecipitation coupled to microarray analyses revealed that Zcf29 binds to and regulates the expression of multidrug transporter genes. Beyond drug resistance, we also discovered that beauvericin blocks the C. albicans morphogenetic transition from yeast to filamentous growth in response to diverse cues. We found that beauvericin represses the expression of many filament-specific genes, including the transcription factor BRG1 Thus, we illuminate novel circuitry regulating multidrug efflux and establish that simultaneously targeting drug resistance and morphogenesis provides a promising strategy to combat life-threatening fungal infections.
侵袭性真菌感染是人类死亡的主要原因。有限数量的抗真菌药物耐药性的迅速出现阻碍了有效治疗,这就需要新的策略来治疗危及生命的真菌感染。在此,我们探索了一种强大的策略,即使用天然产物白僵菌素增强针对主要人类真菌病原体的抗真菌功效。我们发现白僵菌素通过抑制多药外排增强唑类抗真菌药物对唑类耐药念珠菌分离株的活性,并且白僵菌素本身通过Yor1外排。正如在酿酒酵母中观察到的那样,我们确定白僵菌素抑制白色念珠菌中的TOR信号传导。为了进一步表征白僵菌素在白色念珠菌中的活性,我们利用了白僵菌素耐药突变体的基因组测序。耐药性是由转录因子基因TAC1(多药外排的关键调节因子)和未表征的ZCF29中的突变赋予的。转录谱分析和与微阵列分析相结合的染色质免疫沉淀显示,Zcf29结合并调节多药转运蛋白基因的表达。除了耐药性,我们还发现白僵菌素阻断白色念珠菌在多种信号刺激下从酵母形态向丝状生长的形态发生转变。我们发现白僵菌素抑制许多丝状特异性基因的表达,包括转录因子BRG1。因此,我们阐明了调节多药外排的新途径,并确定同时靶向耐药性和形态发生为对抗危及生命的真菌感染提供了一种有前景的策略。