基于无监督数据的自闭症心理化异质性分层。
Unsupervised data-driven stratification of mentalizing heterogeneity in autism.
机构信息
Center for Applied Neuroscience, Department of Psychology, University of Cyprus, Nicosia, Cyprus.
Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
出版信息
Sci Rep. 2016 Oct 18;6:35333. doi: 10.1038/srep35333.
Individuals affected by autism spectrum conditions (ASC) are considerably heterogeneous. Novel approaches are needed to parse this heterogeneity to enhance precision in clinical and translational research. Applying a clustering approach taken from genomics and systems biology on two large independent cognitive datasets of adults with and without ASC (n = 694; n = 249), we find replicable evidence for 5 discrete ASC subgroups that are highly differentiated in item-level performance on an explicit mentalizing task tapping ability to read complex emotion and mental states from the eye region of the face (Reading the Mind in the Eyes Test; RMET). Three subgroups comprising 45-62% of ASC adults show evidence for large impairments (Cohen's d = -1.03 to -11.21), while other subgroups are effectively unimpaired. These findings delineate robust natural subdivisions within the ASC population that may allow for more individualized inferences and accelerate research towards precision medicine goals.
受自闭症谱系障碍(ASC)影响的个体存在相当大的异质性。需要采用新的方法来解析这种异质性,以提高临床和转化研究的精确性。我们应用来自基因组学和系统生物学的聚类方法,对两个具有和不具有 ASC 的成年人的两个独立的大型认知数据集(n=694;n=249)进行分析,发现了 5 个离散的 ASC 亚组的可重复证据,这些亚组在一项明确的心理化任务中的表现高度分化,该任务能够从面部的眼睛区域读取复杂的情绪和心理状态(阅读眼睛测试;RMET)。包含 45-62%的 ASC 成年人的三个亚组表现出明显的损伤(Cohen's d=-1.03 到-11.21),而其他亚组则没有明显损伤。这些发现描绘了 ASC 人群中的稳健自然细分,这可能允许更个体化的推断,并加速朝着精准医学目标的研究。