Suppr超能文献

反概率权重偏差-方差权衡中变量选择的可视化工具。

Visualization tool of variable selection in bias-variance tradeoff for inverse probability weights.

机构信息

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada; Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal.

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada; Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal; Department of Medicine, McGill University, Montreal, QC, Canada.

出版信息

Ann Epidemiol. 2020 Jan;41:56-59. doi: 10.1016/j.annepidem.2019.12.006. Epub 2019 Dec 13.

Abstract

PURPOSE

Inversed probability weighted (IPW) estimators are commonly used to adjust for time-fixed or time-varying confounders. However, in high-dimensional settings, including all identified confounders may result in unstable weights leading to higher variance. We aimed to develop a visualization tool demonstrating the impact of each confounder on the bias and variance of IPW estimates, as well as the propensity score overlap.

METHODS

A SAS macro was developed for this visualization tool and we demonstrate how this tool can be used to identify potentially problematic confounders of the association of statin use after myocardial infarction on one-year mortality in a plasmode simulation study using a cohort of 39,792 patients from the UK (1998-2012).

RESULTS

Through the tool's output, we can identify problematic confounders (two instrumental variables) and important confounders by comparing the estimated psuedo MSE with that from the fully adjusted model and propensity score overlap plot.

CONCLUSION

Our results suggest that the analytic impact of all confounders should be considered carefully when fitting IPW estimators.

摘要

目的

逆概率加权(IPW)估计器常用于调整时间固定或随时间变化的混杂因素。然而,在高维环境中,包括所有已确定的混杂因素可能会导致权重不稳定,从而导致更高的方差。我们旨在开发一种可视化工具,以展示每个混杂因素对 IPW 估计的偏差和方差的影响,以及倾向评分重叠。

方法

我们开发了一个用于此可视化工具的 SAS 宏,并演示了如何使用该工具来识别在 UK(1998-2012 年)的 39792 名患者队列中,使用血浆模型模拟研究,心肌梗死后使用他汀类药物与一年死亡率的关联中潜在的有问题的混杂因素。

结果

通过工具的输出,我们可以通过比较估计的伪均方误差与完全调整模型和倾向评分重叠图的误差,来识别有问题的混杂因素(两个工具变量)和重要的混杂因素。

结论

我们的结果表明,在拟合 IPW 估计器时,应仔细考虑所有混杂因素的分析影响。

相似文献

2
Propensity score weighting under limited overlap and model misspecification.倾向评分加权在有限重叠和模型误设定下。
Stat Methods Med Res. 2020 Dec;29(12):3721-3756. doi: 10.1177/0962280220940334. Epub 2020 Jul 21.

本文引用的文献

5
Statistical foundations for model-based adjustments.基于模型的调整的统计基础。
Annu Rev Public Health. 2015 Mar 18;36:89-108. doi: 10.1146/annurev-publhealth-031914-122559.
8
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
9
Invited commentary: positivity in practice.特邀评论:实践中的积极性。
Am J Epidemiol. 2010 Mar 15;171(6):674-7; discussion 678-81. doi: 10.1093/aje/kwp436. Epub 2010 Feb 5.
10
Reducing bias through directed acyclic graphs.通过有向无环图减少偏差。
BMC Med Res Methodol. 2008 Oct 30;8:70. doi: 10.1186/1471-2288-8-70.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验