Suppr超能文献

血管加压素神经元对未来渗透挑战的双向预测

Bidirectional Anticipation of Future Osmotic Challenges by Vasopressin Neurons.

作者信息

Mandelblat-Cerf Yael, Kim Angela, Burgess Christian R, Subramanian Siva, Tannous Bakhos A, Lowell Bradford B, Andermann Mark L

机构信息

Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.

Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Neuron. 2017 Jan 4;93(1):57-65. doi: 10.1016/j.neuron.2016.11.021. Epub 2016 Dec 15.

Abstract

Ingestion of water and food are major hypo- and hyperosmotic challenges. To protect the body from osmotic stress, posterior pituitary-projecting, vasopressin-secreting neurons (VP neurons) counter osmotic perturbations by altering their release of vasopressin, which controls renal water excretion. Vasopressin levels begin to fall within minutes of water consumption, even prior to changes in blood osmolality. To ascertain the precise temporal dynamics by which water or food ingestion affect VP neuron activity, we directly recorded the spiking and calcium activity of genetically defined VP neurons. In states of elevated osmolality, water availability rapidly decreased VP neuron activity within seconds, beginning prior to water ingestion, upon presentation of water-predicting cues. In contrast, food availability following food restriction rapidly increased VP neuron activity within seconds, but only following feeding onset. These rapid and distinct changes in activity during drinking and feeding suggest diverse neural mechanisms underlying anticipatory regulation of VP neurons.

摘要

摄入水和食物是主要的低渗和高渗挑战。为保护身体免受渗透压应激,投射至垂体后叶、分泌血管加压素的神经元(VP神经元)通过改变血管加压素的释放来应对渗透压扰动,而血管加压素控制着肾脏的水排泄。即使在血液渗透压尚未改变之前,饮水后几分钟内血管加压素水平就开始下降。为确定摄入水或食物影响VP神经元活动的精确时间动态,我们直接记录了基因定义的VP神经元的放电和钙活动。在渗透压升高的状态下,水的可获得性在数秒内迅速降低VP神经元活动,在摄入水之前,在出现水预测线索时就开始了。相比之下,食物限制后的食物可获得性在数秒内迅速增加VP神经元活动,但仅在开始进食后。饮水和进食期间这些活动的快速且明显变化表明,VP神经元预期调节存在多种神经机制。

相似文献

引用本文的文献

3
The neurobiology of thirst and salt appetite.口渴与盐欲的神经生物学
Neuron. 2024 Dec 18;112(24):3999-4016. doi: 10.1016/j.neuron.2024.10.028. Epub 2024 Nov 27.
4
Dysregulation of the fluid homeostasis system by aging.衰老导致流体稳态系统失调。
bioRxiv. 2024 Sep 27:2024.09.26.615271. doi: 10.1101/2024.09.26.615271.
5
Paraneoplastic neurological syndromes of small cell lung cancer.小细胞肺癌的副肿瘤性神经系统综合征
Postep Psychiatr Neurol. 2024 Jun;33(2):80-92. doi: 10.5114/ppn.2024.141157. Epub 2024 Jul 11.
7
Fluid transitions.体液转换。
Neuropharmacology. 2024 Sep 15;256:110009. doi: 10.1016/j.neuropharm.2024.110009. Epub 2024 May 31.

本文引用的文献

1
Hunger-Driven Motivational State Competition.饥饿驱动的动机状态竞争
Neuron. 2016 Oct 5;92(1):187-201. doi: 10.1016/j.neuron.2016.08.032. Epub 2016 Sep 29.
2
Dynamic GABAergic afferent modulation of AgRP neurons.AgRP神经元的动态γ-氨基丁酸能传入调节
Nat Neurosci. 2016 Dec;19(12):1628-1635. doi: 10.1038/nn.4392. Epub 2016 Sep 19.
9
AVP neurons in the paraventricular nucleus of the hypothalamus regulate feeding.下丘脑室旁核的 AVP 神经元调节摄食。
Mol Metab. 2014 Jan 8;3(2):209-15. doi: 10.1016/j.molmet.2013.12.006. eCollection 2014 Apr.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验