Suppr超能文献

用于降低植入深部脑刺激器患者比吸收率的可重构磁共振成像线圈的构建与建模。

Construction and modeling of a reconfigurable MRI coil for lowering SAR in patients with deep brain stimulation implants.

作者信息

Golestanirad Laleh, Iacono Maria Ida, Keil Boris, Angelone Leonardo M, Bonmassar Giorgio, Fox Michael D, Herrington Todd, Adalsteinsson Elfar, LaPierre Cristen, Mareyam Azma, Wald Lawrence L

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.

Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA.

出版信息

Neuroimage. 2017 Feb 15;147:577-588. doi: 10.1016/j.neuroimage.2016.12.056. Epub 2016 Dec 21.

Abstract

Post-operative MRI of patients with deep brain simulation (DBS) implants is useful to assess complications and diagnose comorbidities, however more than one third of medical centers do not perform MRIs on this patient population due to stringent safety restrictions and liability risks. A new system of reconfigurable magnetic resonance imaging head coil composed of a rotatable linearly-polarized birdcage transmitter and a close-fitting 32-channel receive array is presented for low-SAR imaging of patients with DBS implants. The novel system works by generating a region with low electric field magnitude and steering it to coincide with the DBS lead trajectory. We demonstrate that the new coil system substantially reduces the SAR amplification around DBS electrodes compared to commercially available circularly polarized coils in a cohort of 9 patient-derived realistic DBS lead trajectories. We also show that the optimal coil configuration can be reliably identified from the image artifact on B field maps. Our preliminary results suggest that such a system may provide a viable solution for high-resolution imaging of DBS patients in the future. More data is needed to quantify safety limits and recommend imaging protocols before the novel coil system can be used on patients with DBS implants.

摘要

对于植入脑深部电刺激器(DBS)的患者,术后磁共振成像(MRI)有助于评估并发症和诊断合并症,然而,由于严格的安全限制和责任风险,超过三分之一的医疗中心不对这类患者进行MRI检查。本文介绍了一种由可旋转的线性极化鸟笼式发射器和紧密贴合的32通道接收阵列组成的可重构磁共振成像头部线圈新系统,用于对植入DBS的患者进行低比吸收率(SAR)成像。该新型系统通过生成一个低电场强度区域并将其引导至与DBS导线轨迹重合来工作。我们证明,在一组9条源自患者的真实DBS导线轨迹中,与市售圆极化线圈相比,新线圈系统可大幅降低DBS电极周围的SAR放大率。我们还表明,可以从B场图上的图像伪影可靠地识别出最佳线圈配置。我们的初步结果表明,这种系统未来可能为DBS患者的高分辨率成像提供可行的解决方案。在新型线圈系统可用于植入DBS的患者之前,还需要更多数据来量化安全限度并推荐成像方案。

相似文献

1
Construction and modeling of a reconfigurable MRI coil for lowering SAR in patients with deep brain stimulation implants.
Neuroimage. 2017 Feb 15;147:577-588. doi: 10.1016/j.neuroimage.2016.12.056. Epub 2016 Dec 21.
4
RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
Neuroimage. 2019 Jan 1;184:566-576. doi: 10.1016/j.neuroimage.2018.09.034. Epub 2018 Sep 19.
6
3-Tesla MRI of deep brain stimulation patients: safety assessment of coils and pulse sequences.
J Neurosurg. 2019 Feb 22;132(2):586-594. doi: 10.3171/2018.11.JNS181338. Print 2020 Feb 1.

引用本文的文献

2
Optimized radiofrequency shimming using low-heating B1+-mapping in the presence of deep brain stimulation implants: Proof of concept.
PLoS One. 2024 Dec 18;19(12):e0316002. doi: 10.1371/journal.pone.0316002. eCollection 2024.
3
A deep brain stimulation-conditioned RF coil for 3T MRI.
Magn Reson Med. 2025 Mar;93(3):1411-1426. doi: 10.1002/mrm.30331. Epub 2024 Oct 24.
4
Low-field MRI's Spark on Implant Safety: A Closer Look at Radiofrequency Heating.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-5. doi: 10.1109/EMBC40787.2023.10340861.
7
A comparative study of RF heating of deep brain stimulation devices in vertical vs. horizontal MRI systems.
PLoS One. 2022 Dec 9;17(12):e0278187. doi: 10.1371/journal.pone.0278187. eCollection 2022.
8
The Position and Orientation of the Pulse Generator Affects MRI RF Heating of Epicardial Leads in Children.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:5000-5003. doi: 10.1109/EMBC48229.2022.9871968.
9
Identifying the knowledge structure of electromagnetic fields and health research: Text network analysis and topic modeling.
PLoS One. 2022 Aug 17;17(8):e0273005. doi: 10.1371/journal.pone.0273005. eCollection 2022.
10
Machine learning-based prediction of MRI-induced power absorption in the tissue in patients with simplified deep brain stimulation lead models.
IEEE Trans Electromagn Compat. 2021 Oct;63(5):1757-1766. doi: 10.1109/temc.2021.3106872. Epub 2021 Sep 30.

本文引用的文献

3
Mechanisms of deep brain stimulation.
J Neurophysiol. 2016 Jan 1;115(1):19-38. doi: 10.1152/jn.00281.2015. Epub 2015 Oct 28.
5
A novel brain stimulation technology provides compatibility with MRI.
Sci Rep. 2015 Apr 29;5:9805. doi: 10.1038/srep09805.
6
Parallel transmit pulse design for patients with deep brain stimulation implants.
Magn Reson Med. 2015 May;73(5):1896-903. doi: 10.1002/mrm.25324. Epub 2014 Jun 19.
7
Safely assessing radiofrequency heating potential of conductive devices using image-based current measurements.
Magn Reson Med. 2015 Jan;73(1):427-41. doi: 10.1002/mrm.25103. Epub 2014 Jan 22.
8
Massively parallel MRI detector arrays.
J Magn Reson. 2013 Apr;229:75-89. doi: 10.1016/j.jmr.2013.02.001. Epub 2013 Feb 7.
9
Evaluation of the RF heating of a generic deep brain stimulator exposed in 1.5 T magnetic resonance scanners.
Bioelectromagnetics. 2013 Feb;34(2):104-13. doi: 10.1002/bem.21745. Epub 2012 Oct 11.
10
Heating induced near deep brain stimulation lead electrodes during magnetic resonance imaging with a 3 T transceive volume head coil.
Phys Med Biol. 2012 Sep 7;57(17):5651-65. doi: 10.1088/0031-9155/57/17/5651. Epub 2012 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验