Suppr超能文献

嗜热真菌中基因组编辑CRISPR/Cas9系统的开发及其在高产纤维素酶生产菌株工程中的应用。

Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal species and its application to hyper-cellulase production strain engineering.

作者信息

Liu Qian, Gao Ranran, Li Jingen, Lin Liangcai, Zhao Junqi, Sun Wenliang, Tian Chaoguang

机构信息

Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China.

出版信息

Biotechnol Biofuels. 2017 Jan 3;10:1. doi: 10.1186/s13068-016-0693-9. eCollection 2017.

Abstract

BACKGROUND

Over the past 3 years, the CRISPR/Cas9 system has revolutionized the field of genome engineering. However, its application has not yet been validated in thermophilic fungi. , an important thermophilic biomass-degrading fungus, has attracted industrial interest for the production of efficient thermostable enzymes. Genetic manipulation of is crucial for metabolic engineering and to unravel the mechanism of lignocellulose deconstruction. The lack of a powerful, versatile genome-editing tool has impeded the broader exploitation of in biotechnology.

RESULTS

In this study, a CRISPR/Cas9 system for efficient multiplexed genome engineering was successfully developed in the thermophilic species and . This CRISPR/Cas9 system could efficiently mutate the imported gene in the genome via NHEJ-mediated events. As a proof of principle, the genes of the cellulase production pathway, including -, -, - and -, were chosen as editing targets. Simultaneous multigene disruptions of up to four of these different loci were accomplished with neomycin selection marker integration via a single transformation using the CRISPR/Cas9 system. Using this genome-engineering tool, multiple strains exhibiting pronounced hyper-cellulase production were generated, in which the extracellular secreted protein and lignocellulase activities were significantly increased (up to 5- and 13-fold, respectively) compared with the parental strain.

CONCLUSIONS

A genome-wide engineering system for thermophilic fungi was established based on CRISPR/Cas9. Successful expansion of this system without modification to indicates it has wide adaptability and flexibility for use in other species. This system could greatly accelerate strain engineering of thermophilic fungi for production of industrial enzymes, such as cellulases as shown in this study and possibly bio-based fuels and chemicals in the future.

摘要

背景

在过去3年中,CRISPR/Cas9系统彻底改变了基因组工程领域。然而,其在嗜热真菌中的应用尚未得到验证。嗜热栖热菌是一种重要的嗜热生物质降解真菌,因其能产生高效的热稳定酶而引起了工业界的兴趣。对嗜热栖热菌进行基因操作对于代谢工程以及阐明木质纤维素解构机制至关重要。缺乏强大、通用的基因组编辑工具阻碍了嗜热栖热菌在生物技术领域的更广泛应用。

结果

在本研究中,成功地在嗜热栖热菌和嗜热栖热放线菌中开发了一种用于高效多重基因组工程的CRISPR/Cas9系统。该CRISPR/Cas9系统可通过非同源末端连接(NHEJ)介导的事件有效地使基因组中导入的基因发生突变。作为原理验证,选择了纤维素酶产生途径的基因,包括 -、 -、 - 和 -,作为编辑靶点。使用CRISPR/Cas9系统通过单次转化并整合新霉素选择标记,实现了多达四个不同位点的同时多基因破坏。使用这种基因组工程工具,产生了多个表现出明显高纤维素酶产量的菌株,与亲本菌株相比,其细胞外分泌蛋白和木质纤维素酶活性显著增加(分别高达5倍和13倍)。

结论

基于CRISPR/Cas9建立了嗜热真菌的全基因组工程系统。该系统在未经修改的情况下成功扩展到嗜热栖热放线菌,表明其在其他嗜热栖热菌物种中具有广泛的适应性和灵活性。该系统可极大地加速嗜热真菌的菌株工程,用于生产工业酶,如本研究中所示的纤维素酶,未来可能还可用于生产生物基燃料和化学品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/083d/5209885/4cf38382f8dc/13068_2016_693_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验