Suppr超能文献

铂/氧化铪/氧化锌/氮化钛忆阻器系统的单无机突触中模拟的突触可塑性和学习行为

Synaptic Plasticity and Learning Behaviors Mimicked in Single Inorganic Synapses of Pt/HfO/ZnO/TiN Memristive System.

作者信息

Wang Lai-Guo, Zhang Wei, Chen Yan, Cao Yan-Qiang, Li Ai-Dong, Wu Di

机构信息

National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.

Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anhui, 246011, People's Republic of China.

出版信息

Nanoscale Res Lett. 2017 Dec;12(1):65. doi: 10.1186/s11671-017-1847-9. Epub 2017 Jan 23.

Abstract

In this work, a kind of new memristor with the simple structure of Pt/HfO/ZnO/TiN was fabricated completely via combination of thermal-atomic layer deposition (TALD) and plasma-enhanced ALD (PEALD). The synaptic plasticity and learning behaviors of Pt/HfO/ZnO/TiN memristive system have been investigated deeply. Multilevel resistance states are obtained by varying the programming voltage amplitudes during the pulse cycling. The device conductance can be continuously increased or decreased from cycle to cycle with better endurance characteristics up to about 3 × 10 cycles. Several essential synaptic functions are simultaneously achieved in such a single double-layer of HfO/ZnO device, including nonlinear transmission properties, such as long-term plasticity (LTP), short-term plasticity (STP), and spike-timing-dependent plasticity. The transformation from STP to LTP induced by repetitive pulse stimulation is confirmed in Pt/HfO/ZnO/TiN memristive device. Above all, simple structure of Pt/HfO/ZnO/TiN by ALD technique is a kind of promising memristor device for applications in artificial neural network.

摘要

在这项工作中,一种具有Pt/HfO/ZnO/TiN简单结构的新型忆阻器完全通过热原子层沉积(TALD)和等离子体增强原子层沉积(PEALD)相结合的方法制备而成。对Pt/HfO/ZnO/TiN忆阻系统的突触可塑性和学习行为进行了深入研究。通过在脉冲循环期间改变编程电压幅度获得多级电阻状态。器件电导可以在连续循环中不断增加或减少,具有高达约3×10⁴ 次循环的更好的耐久性特性。在这样一个单一的HfO/ZnO双层器件中同时实现了几种基本的突触功能,包括非线性传输特性,如长期可塑性(LTP)、短期可塑性(STP)和尖峰时间依赖可塑性。在Pt/HfO/ZnO/TiN忆阻器件中证实了由重复脉冲刺激引起的从STP到LTP的转变。最重要的是,通过ALD技术制备的Pt/HfO/ZnO/TiN简单结构是一种在人工神经网络应用中很有前景的忆阻器器件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d11/5256630/7f6e098c4b94/11671_2017_1847_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验