Suppr超能文献

超高场 MRI 用于脑干神经影像学的挑战与机遇。

Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, CNY 149-2301, 13th St. Charlestown, Boston, MA 02129, USA; Department of Radiology, Logan University, Chesterfield, MO, USA.

Somatosensory and Autonomic Therapy Research, Institute for Neuroradiology, Hannover Medical School, Hannover, Germany.

出版信息

Neuroimage. 2018 Mar;168:412-426. doi: 10.1016/j.neuroimage.2017.02.052. Epub 2017 Feb 21.

Abstract

The human brainstem plays a central role in connecting the cerebrum, the cerebellum and the spinal cord to one another, hosting relay nuclei for afferent and efferent signaling, and providing source nuclei for several neuromodulatory systems that impact central nervous system function. While the investigation of the brainstem with functional or structural magnetic resonance imaging has been hampered for years due to this brain structure's physiological and anatomical characteristics, the field has seen significant advances in recent years thanks to the broader adoption of ultrahigh-field (UHF) MRI scanning. In the present review, we focus on the advantages offered by UHF in the context of brainstem imaging, as well as the challenges posed by the investigation of this complex brain structure in terms of data acquisition and analysis. We also illustrate how UHF MRI can shed new light on the neuroanatomy and neurophysiology underlying different brainstem-based circuitries, such as the central autonomic network and neurotransmitter/neuromodulator systems, discuss existing and foreseeable clinical applications to better understand diseases such as chronic pain and Parkinson's disease, and explore promising future directions for further improvements in brainstem imaging using UHF MRI techniques.

摘要

人类脑干在连接大脑、小脑和脊髓方面起着核心作用,它是传入和传出信号的中继核,也是几个影响中枢神经系统功能的神经调质系统的源头核。由于脑干的生理和解剖学特征,多年来,利用功能或结构磁共振成像对脑干进行研究一直受到阻碍,但近年来,由于超高频(UHF)MRI 扫描的广泛应用,该领域取得了重大进展。在本综述中,我们重点介绍了 UHF 在脑干成像方面的优势,以及在采集和分析数据方面,研究这一复杂脑结构所带来的挑战。我们还举例说明了 UHF MRI 如何为不同基于脑干的回路的神经解剖学和神经生理学提供新的见解,如中枢自主网络和神经递质/神经调质系统,讨论现有的和可预见的临床应用,以更好地了解慢性疼痛和帕金森病等疾病,并探讨使用 UHF MRI 技术进一步改善脑干成像的有前景的未来方向。

相似文献

1
Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI.
Neuroimage. 2018 Mar;168:412-426. doi: 10.1016/j.neuroimage.2017.02.052. Epub 2017 Feb 21.
2
Brainstem neuroimaging of nociception and pain circuitries.
Pain Rep. 2019 Aug 7;4(4):e745. doi: 10.1097/PR9.0000000000000745. eCollection 2019 Jul-Aug.
3
Advances in functional and structural imaging of the brainstem: implications for disease.
Curr Opin Neurol. 2024 Aug 1;37(4):361-368. doi: 10.1097/WCO.0000000000001284. Epub 2024 Jun 17.
4
WIKIBrainStem: An online atlas to manually segment the human brainstem at the mesoscopic scale from ultrahigh field MRI.
Neuroimage. 2021 Aug 1;236:118080. doi: 10.1016/j.neuroimage.2021.118080. Epub 2021 Apr 18.
5
Clinical Neuroimaging Using 7 T MRI: Challenges and Prospects.
J Neuroimaging. 2018 Jan;28(1):5-13. doi: 10.1111/jon.12481. Epub 2017 Dec 4.
6
Posterior Fossa Malformations.
Neuroimaging Clin N Am. 2019 Aug;29(3):367-383. doi: 10.1016/j.nic.2019.03.008. Epub 2019 May 2.
7
Cerebellar and Brainstem Malformations.
Neuroimaging Clin N Am. 2016 Aug;26(3):341-57. doi: 10.1016/j.nic.2016.03.005.
8
Spinal cord MRI at 7T.
Neuroimage. 2018 Mar;168:437-451. doi: 10.1016/j.neuroimage.2017.07.003. Epub 2017 Jul 3.
9
Anatomy of the brainstem: a gaze into the stem of life.
Semin Ultrasound CT MR. 2010 Jun;31(3):196-219. doi: 10.1053/j.sult.2010.03.006.
10
Functional neuroimaging of the central autonomic network: recent developments and clinical implications.
Clin Auton Res. 2019 Dec;29(6):555-566. doi: 10.1007/s10286-018-0577-0. Epub 2018 Nov 23.

引用本文的文献

1
Mapping cross-modal functional connectivity of major neurotransmitter systems in the human brain.
Brain Struct Funct. 2025 Aug 19;230(7):137. doi: 10.1007/s00429-025-02996-4.
2
Delineation of the trigeminal-lateral parabrachial-central amygdala tract in humans.
Imaging Neurosci (Camb). 2025 May 2;3. doi: 10.1162/imag_a_00567. eCollection 2025.
3
Multimodal state-dependent connectivity analysis of arousal and autonomic centers in the brainstem and basal forebrain.
Imaging Neurosci (Camb). 2025 Jul 21;3. doi: 10.1162/IMAG.a.91. eCollection 2025.
4
Distinguishing the activity of adjacent somatosensory nuclei within the brainstem using 3T fMRI.
Imaging Neurosci (Camb). 2025 May 12;3. doi: 10.1162/imag_a_00581. eCollection 2025.
5
The habenula in mood disorders: A systematic review of human studies.
Mol Psychiatry. 2025 Aug 1. doi: 10.1038/s41380-025-03105-x.
6
Magnetic resonance imaging for spinocerebellar ataxia: a bibliometric analysis based on web of science.
Front Neurol. 2025 Jul 15;16:1512800. doi: 10.3389/fneur.2025.1512800. eCollection 2025.
7
Probabilistic Mapping and Automated Segmentation of Human Brainstem White Matter Bundles.
medRxiv. 2025 May 5:2025.05.01.25326687. doi: 10.1101/2025.05.01.25326687.
8
Optimizing T2* imaging for adolescent and young adult patients at 7 T.
Pediatr Radiol. 2025 Mar 17. doi: 10.1007/s00247-025-06213-6.
9
Differentiating BOLD and non-BOLD signals in fMRI time series using cross-cortical depth delay patterns.
bioRxiv. 2024 Dec 26:2024.12.26.628516. doi: 10.1101/2024.12.26.628516.

本文引用的文献

1
Deep brain stimulation of the periaqueductal gray releases endogenous opioids in humans.
Neuroimage. 2017 Feb 1;146:833-842. doi: 10.1016/j.neuroimage.2016.08.038. Epub 2016 Aug 21.
2
Reduced insula habituation associated with amplification of trigeminal brainstem input in migraine.
Cephalalgia. 2017 Oct;37(11):1026-1038. doi: 10.1177/0333102416665223. Epub 2016 Aug 13.
3
fMRI at High Spatial Resolution: Implications for BOLD-Models.
Front Comput Neurosci. 2016 Jun 28;10:66. doi: 10.3389/fncom.2016.00066. eCollection 2016.
4
Surgical Accuracy of 3-Tesla Versus 7-Tesla Magnetic Resonance Imaging in Deep Brain Stimulation for Parkinson Disease.
World Neurosurg. 2016 Sep;93:410-2. doi: 10.1016/j.wneu.2016.06.084. Epub 2016 Jun 29.
5
Interventional MR Imaging for Deep-Brain Stimulation Electrode Placement.
Radiology. 2016 Dec;281(3):940-946. doi: 10.1148/radiol.2015151136. Epub 2016 Jun 20.
6
Neural correlates of single-vessel haemodynamic responses in vivo.
Nature. 2016 Jun 16;534(7607):378-82. doi: 10.1038/nature17965. Epub 2016 May 25.
7
MICA-A toolbox for masked independent component analysis of fMRI data.
Hum Brain Mapp. 2016 Oct;37(10):3544-56. doi: 10.1002/hbm.23258. Epub 2016 May 11.
9
Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data.
Neuroimage. 2016 Jul 1;134:338-354. doi: 10.1016/j.neuroimage.2016.04.004. Epub 2016 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验