Suppr超能文献

利用时空光谱特征的多能量 CT 图像有效降噪方法。

An effective noise reduction method for multi-energy CT images that exploit spatio-spectral features.

机构信息

Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA.

Biomedical Engineering and Physiology Graduate Program, Mayo Graduate School, Rochester, MN, 55905, USA.

出版信息

Med Phys. 2017 May;44(5):1610-1623. doi: 10.1002/mp.12174. Epub 2017 Apr 12.

Abstract

PURPOSE

To develop and evaluate an image-domain noise reduction method for multi-energy CT (MECT) data.

METHODS

Multi-Energy Non-Local Means (MENLM) is a technique that uses the redundant information in MECT images to achieve noise reduction. In this method, spatio-spectral features are used to determine the similarity between pixels, making the similarity evaluation more robust to image noise. The performance of this MENLM filter was tested on images acquired on a whole-body research photon counting CT system. The impact of filtering on image quality was quantitatively evaluated in phantom studies in terms of image noise level (standard deviation of pixel values), noise power spectrum (NPS), in-plane and cross-plane spatial resolution, CT number accuracy, material decomposition performance, and subjective low-contrast spatial resolution using the American College of Radiology (ACR) CT accreditation phantom. Clinical feasibility was assessed by performing MENLM on contrast-enhanced swine images and unenhanced cadaver head images using clinically relevant doses and dose rates.

RESULTS

The phantom studies demonstrated that the MENLM filter reduced noise substantially and still preserved the shape and peak frequency of the NPS. With 80% noise reduction, MENLM filtering caused no degradation of high-contrast spatial resolution, as illustrated by the modulation transfer function (MTF) and slice sensitivity profile (SSP). CT number accuracy was also maintained for all energy channels, demonstrating that energy resolution was not affected by filtering. Material decomposition performance was improved with MENLM filtering. The subjective evaluation using the ACR phantom demonstrated an improvement in low-contrast performance. MENLM achieved effective noise reduction in both contrast-enhanced swine images and unenhanced cadaver head images, resulting in improved detection of subtle vascular structures and the differentiation of white/gray matter.

CONCLUSION

In MECT, MENLM achieved around 80% noise reduction and greatly improved material decomposition performance and the detection of subtle anatomical/low-contrast features while maintaining spatial and energy resolution. MENLM filtering may improve diagnostic or functional analysis accuracy and facilitate radiation dose and contrast media reduction for MECT.

摘要

目的

开发和评估一种用于多能 CT(MECT)数据的基于图像域的降噪方法。

方法

多能非局部均值(MENLM)是一种利用 MECT 图像中的冗余信息实现降噪的技术。在该方法中,使用空间-光谱特征来确定像素之间的相似性,从而使相似性评估对图像噪声更稳健。在全身研究光子计数 CT 系统上获取的图像上测试了这种 MENLM 滤波器的性能。在体模研究中,通过图像噪声水平(像素值的标准差)、噪声功率谱(NPS)、平面和平面内空间分辨率、CT 数准确性、材料分解性能以及使用美国放射学院(ACR)CT 认证体模进行的低对比度空间分辨率的主观评估,定量评估了滤波对图像质量的影响。通过使用临床相关剂量和剂量率对对比增强猪图像和未增强尸体头部图像进行 MENLM,评估了临床可行性。

结果

体模研究表明,MENLM 滤波器可大幅降低噪声,同时保持 NPS 的形状和峰值频率。在 80%的噪声降低下,MENLM 滤波不会导致高对比度空间分辨率的退化,如调制传递函数(MTF)和切片灵敏度图(SSP)所示。对于所有能量通道,CT 数准确性也得到了保持,表明滤波不会影响能量分辨率。材料分解性能也随着 MENLM 滤波的使用而得到改善。使用 ACR 体模进行的主观评估表明,低对比度性能得到了提高。MENLM 可在对比增强猪图像和未增强尸体头部图像中实现有效的噪声降低,从而改善对细微血管结构的检测以及白/灰质的区分。

结论

在 MECT 中,MENLM 实现了约 80%的噪声降低,极大地改善了材料分解性能和对细微解剖/低对比度特征的检测,同时保持了空间和能量分辨率。MENLM 滤波可能会提高诊断或功能分析的准确性,并有助于降低 MECT 的辐射剂量和对比剂用量。

相似文献

1
An effective noise reduction method for multi-energy CT images that exploit spatio-spectral features.
Med Phys. 2017 May;44(5):1610-1623. doi: 10.1002/mp.12174. Epub 2017 Apr 12.
2
Adaptive nonlocal means filtering based on local noise level for CT denoising.
Med Phys. 2014 Jan;41(1):011908. doi: 10.1118/1.4851635.
4
Iterative image-domain decomposition for dual-energy CT.
Med Phys. 2014 Apr;41(4):041901. doi: 10.1118/1.4866386.
6
Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.
Med Phys. 2018 Jul;45(7):3031-3042. doi: 10.1002/mp.12959. Epub 2018 May 28.
8
A robust noise reduction technique for time resolved CT.
Med Phys. 2016 Jan;43(1):347. doi: 10.1118/1.4938576.
9

引用本文的文献

2
CT image denoising methods for image quality improvement and radiation dose reduction.
J Appl Clin Med Phys. 2024 Feb;25(2):e14270. doi: 10.1002/acm2.14270. Epub 2024 Jan 19.
3
A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images.
Tomography. 2023 Jul 2;9(4):1286-1302. doi: 10.3390/tomography9040102.
4
Evaluation of the impact of a novel denoising algorithm on image quality in dual-energy abdominal CT of obese patients.
Eur Radiol. 2023 Oct;33(10):7056-7065. doi: 10.1007/s00330-023-09644-7. Epub 2023 Apr 21.
5
Measurement of enhanced vasa vasorum density in a porcine carotid model using photon counting detector CT.
J Med Imaging (Bellingham). 2023 Jan;10(1):016001. doi: 10.1117/1.JMI.10.1.016001. Epub 2023 Feb 6.
6
Spectral Photon Counting CT: Imaging Algorithms and Performance Assessment.
IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):453-464. doi: 10.1109/trpms.2020.3007380. Epub 2020 Jul 7.
7
A Blooming correction technique for improved vasa vasorum detection using an ultra-high-resolution photon-counting detector CT.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11312. doi: 10.1117/12.2549348. Epub 2020 Mar 16.
8
Photon Counting CT: Clinical Applications and Future Developments.
IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):441-452. doi: 10.1109/trpms.2020.3020212. Epub 2020 Aug 28.
9
Inpainting-filtering for metal artifact reduction (IMIF-MAR) in computed tomography.
Phys Eng Sci Med. 2021 Jun;44(2):409-423. doi: 10.1007/s13246-021-00990-8. Epub 2021 Mar 24.
10
Improved coronary calcification quantification using photon-counting-detector CT: an ex vivo study in cadaveric specimens.
Eur Radiol. 2021 Sep;31(9):6621-6630. doi: 10.1007/s00330-021-07780-6. Epub 2021 Mar 13.

本文引用的文献

1
Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography.
Phys Med Biol. 2016 Sep 21;61(18):6707-6732. doi: 10.1088/0031-9155/61/18/6707. Epub 2016 Aug 23.
2
Practical considerations for noise power spectra estimation for clinical CT scanners.
J Appl Clin Med Phys. 2016 May 8;17(3):392-407. doi: 10.1120/jacmp.v17i3.5841.
4
Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.
Phys Med Biol. 2016 Feb 21;61(4):1572-95. doi: 10.1088/0031-9155/61/4/1572. Epub 2016 Feb 2.
6
A robust noise reduction technique for time resolved CT.
Med Phys. 2016 Jan;43(1):347. doi: 10.1118/1.4938576.
7
Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications.
Radiology. 2015 Sep;276(3):637-53. doi: 10.1148/radiol.2015142631.
8
Image-based Material Decomposition with a General Volume Constraint for Photon-Counting CT.
Proc SPIE Int Soc Opt Eng. 2015;9412. doi: 10.1117/12.2082069.
9
Initial results from a prototype whole-body photon-counting computed tomography system.
Proc SPIE Int Soc Opt Eng. 2015;9412. doi: 10.1117/12.2082739.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验