Suppr超能文献

一项使用微阵列和RNA测序数据集推断基因调控网络的比较分析测定。

A comparative analytical assay of gene regulatory networks inferred using microarray and RNA-seq datasets.

作者信息

Izadi Fereshteh, Zarrini Hamid Najafi, Kiani Ghaffar, Jelodar Nadali Babaeian

机构信息

Plant Breeding Department, Sari Agricultural Sciences and Natural Resources, Iran.

出版信息

Bioinformation. 2016 Oct 12;12(6):340-346. doi: 10.6026/97320630012340. eCollection 2016.

Abstract

A Gene Regulatory Network (GRN) is a collection of interactions between molecular regulators and their targets in cells governing gene expression level. Omics data explosion generated from high-throughput genomic assays such as microarray and RNA-Seq technologies and the emergence of a number of pre-processing methods demands suitable guidelines to determine the impact of transcript data platforms and normalization procedures on describing associations in GRNs. In this study exploiting publically available microarray and RNA-Seq datasets and a gold standard of transcriptional interactions in Arabidopsis, we performed a comparison between six GRNs derived by RNA-Seq and microarray data and different normalization procedures. As a result we observed that compared algorithms were highly data-specific and Networks reconstructed by RNA-Seq data revealed a considerable accuracy against corresponding networks captured by microarrays. Topological analysis showed that GRNs inferred from two platforms were similar in several of topological features although we observed more connectivity in RNA-Seq derived genes network. Taken together transcriptional regulatory networks obtained by Robust Multiarray Averaging (RMA) and Variance-Stabilizing Transformed (VST) normalized data demonstrated predicting higher rate of true edges over the rest of methods used in this comparison.

摘要

基因调控网络(GRN)是细胞中分子调节因子与其靶标之间相互作用的集合,用于调控基因表达水平。由微阵列和RNA测序技术等高通量基因组检测产生的组学数据爆炸式增长,以及多种预处理方法的出现,都需要合适的指导方针来确定转录数据平台和标准化程序对描述基因调控网络中关联的影响。在本研究中,我们利用公开可用的微阵列和RNA测序数据集以及拟南芥转录相互作用的金标准,对RNA测序和微阵列数据以及不同标准化程序衍生的六个基因调控网络进行了比较。结果我们观察到,所比较的算法具有高度的数据特异性,并且RNA测序数据重建的网络相对于微阵列捕获的相应网络显示出相当高的准确性。拓扑分析表明,尽管我们观察到RNA测序衍生的基因网络具有更多的连通性,但从两个平台推断出的基因调控网络在几个拓扑特征上是相似的。综合来看,通过稳健多阵列平均(RMA)和方差稳定变换(VST)标准化数据获得的转录调控网络在本比较中所使用的其他方法中显示出更高的真边预测率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a0/5320930/f79b06a82074/97320630012340F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验