Dhiman Ramesh C, Sarkar Soma
National Institute of Malaria Research (ICMR), Dwarka Sector 8, Delhi, 110077, India.
Malar J. 2017 Mar 20;16(1):122. doi: 10.1186/s12936-017-1779-y.
Risks of malaria epidemics in relation to El Niño and Southern Oscillation (ENSO) events have been mapped and studied at global level. In India, where malaria is a major public health problem, no such effort has been undertaken that inter-relates El Niño, Indian Summer Monsoon Rainfall (ISMR) and malaria. The present study has been undertaken to find out the relationship between ENSO events, ISMR and intra-annual variability in malaria cases in India, which in turn could help mitigate the malaria outbreaks.
Correlation coefficients among 'rainfall index' (ISMR), '+ winter ONI' (NDJF) and 'malaria case index' were calculated using annual state-level data for the last 22 years. The 'malaria case index' representing 'relative change from mean' was correlated to the 4 month (November-February) average positive Oceanic Niño Index (ONI). The resultant correlations between '+ winter ONI' and 'malaria case index' were further analysed on geographical information system platform to generate spatial correlation map.
The correlation between '+ winter ONI' and 'rainfall index' shows that there is great disparity in effect of ENSO over ISMR distribution across the country. Correlation between 'rainfall index' and 'malaria case index' shows that malaria transmission in all geographical regions of India are not equally affected by the ISMR deficit or excess. Correlation between '+ winter ONI' and 'malaria case index' was found ranging from -0.5 to + 0.7 (p < 0.05). A positive correlation indicates that increase in El Niño intensity (+ winter ONI) will lead to rise in total malaria cases in the concurrent year in the states of Orissa, Chhattisgarh, Jharkhand, Bihar, Goa, eastern parts of Madhya Pradesh, part of Andhra Pradesh, Uttarakhand and Meghalaya. Whereas, negative correlations were found in the states of Rajasthan, Haryana, Gujarat, part of Tamil Nadu, Manipur, Mizoram and Sikkim indicating the likelihood of outbreaks in La Nina condition.
The generated map, representing spatial correlation between ' + winter ONI' and 'malaria case index', indicates positive correlations in eastern part, while negative correlations in western part of India. This study provides plausible guidelines to national programme for planning intervention measures in view of ENSO events. For better resolution, district level study with inclusion of IOD and 'epochal variation of monsoon rainfall' factors at micro-level is desired for better forecast of malaria outbreaks in the regions with 'no correlation'.
与厄尔尼诺和南方涛动(ENSO)事件相关的疟疾流行风险已在全球范围内进行了绘制和研究。在印度,疟疾是一个主要的公共卫生问题,但尚未开展将厄尔尼诺、印度夏季风降雨(ISMR)和疟疾相互关联的工作。本研究旨在找出ENSO事件、ISMR与印度疟疾病例年内变化之间的关系,这反过来有助于减轻疟疾疫情。
利用过去22年的年度邦级数据计算“降雨指数”(ISMR)、“冬季+海洋尼诺指数”(NDJF)和“疟疾病例指数”之间的相关系数。代表“相对于均值的相对变化”的“疟疾病例指数”与4个月(11月至2月)平均正海洋尼诺指数(ONI)相关。在地理信息系统平台上进一步分析“冬季+海洋尼诺指数”与“疟疾病例指数”之间的相关结果,以生成空间相关图。
“冬季+海洋尼诺指数”与“降雨指数”之间的相关性表明,ENSO对全国ISMR分布的影响存在很大差异。“降雨指数”与“疟疾病例指数”之间的相关性表明,印度所有地理区域的疟疾传播受ISMR不足或过剩的影响并不相同。“冬季+海洋尼诺指数”与“疟疾病例指数”之间的相关性在-0.5至+0.7之间(p<0.05)。正相关表明,厄尔尼诺强度增加(冬季+海洋尼诺指数)将导致奥里萨邦、恰蒂斯加尔邦、贾坎德邦、比哈尔邦、果阿邦、中央邦东部、安得拉邦部分地区、北阿坎德邦和梅加拉亚邦在同年疟疾病例总数上升。而在拉贾斯坦邦、哈里亚纳邦、古吉拉特邦、泰米尔纳德邦部分地区、曼尼普尔邦、米佐拉姆邦和锡金邦发现了负相关,这表明在拉尼娜状态下可能爆发疫情。
所生成的代表“冬季+海洋尼诺指数”与“疟疾病例指数”之间空间相关性的地图显示,印度东部为正相关,西部为负相关。本研究为国家计划根据ENSO事件规划干预措施提供了合理的指导方针。为了获得更好的分辨率,希望进行地区层面的研究,纳入印度洋偶极子和季风降雨的“时代变化”等微观层面因素,以便对“无相关性”地区的疟疾疫情进行更好的预测。