Suppr超能文献

迈向精准医疗:背景与数学挑战。

Toward Precision Healthcare: Context and Mathematical Challenges.

作者信息

Colijn Caroline, Jones Nick, Johnston Iain G, Yaliraki Sophia, Barahona Mauricio

机构信息

Department of Mathematics, Imperial College LondonLondon, UK; EPSRC Centre for Mathematics of Precision Healthcare, Imperial College LondonLondon, UK.

EPSRC Centre for Mathematics of Precision Healthcare, Imperial College LondonLondon, UK; School of Biosciences, University of BirminghamBirmingham, UK.

出版信息

Front Physiol. 2017 Mar 21;8:136. doi: 10.3389/fphys.2017.00136. eCollection 2017.

Abstract

Precision medicine refers to the idea of delivering the right treatment to the right patient at the right time, usually with a focus on a data-centered approach to this task. In this perspective piece, we use the term "precision healthcare" to describe the development of precision approaches that bridge from the individual to the population, taking advantage of individual-level data, but also taking the social context into account. These problems give rise to a broad spectrum of technical, scientific, policy, ethical and social challenges, and new mathematical techniques will be required to meet them. To ensure that the science underpinning "precision" is robust, interpretable and well-suited to meet the policy, ethical and social questions that such approaches raise, the mathematical methods for data analysis should be transparent, robust, and able to adapt to errors and uncertainties. In particular, precision methodologies should capture the complexity of data, yet produce tractable descriptions at the relevant resolution while preserving intelligibility and traceability, so that they can be used by practitioners to aid decision-making. Through several case studies in this domain of precision healthcare, we argue that this vision requires the development of new mathematical frameworks, both in modeling and in data analysis and interpretation.

摘要

精准医学是指在正确的时间为正确的患者提供正确治疗的理念,通常侧重于以数据为中心的方法来完成这项任务。在这篇观点文章中,我们使用“精准医疗保健”一词来描述精准方法的发展,这些方法从个体延伸至群体,既利用个体层面的数据,也考虑社会背景。这些问题引发了广泛的技术、科学、政策、伦理和社会挑战,需要新的数学技术来应对。为确保支撑“精准”的科学是稳健的、可解释的,并且非常适合应对此类方法所引发的政策、伦理和社会问题,数据分析的数学方法应是透明的、稳健的,并且能够适应误差和不确定性。特别是,精准方法应能捕捉数据的复杂性,但在相关分辨率下产生易于处理的描述,同时保持可理解性和可追溯性,以便从业者能够使用它们来辅助决策。通过精准医疗保健领域的几个案例研究,我们认为这一愿景需要在建模以及数据分析和解释方面开发新的数学框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/278d/5359292/61167ec57ca6/fphys-08-00136-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验