Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, United States; Information Sciences Institute, University of Southern California, United States; Department of Computer Science, University of Southern California, United States.
Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, United States.
Med Image Anal. 2017 Oct;41:32-39. doi: 10.1016/j.media.2017.04.013. Epub 2017 Apr 28.
We present a continuous model for structural brain connectivity based on the Poisson point process. The model treats each streamline curve in a tractography as an observed event in connectome space, here the product space of the gray matter/white matter interfaces. We approximate the model parameter via kernel density estimation. To deal with the heavy computational burden, we develop a fast parameter estimation method by pre-computing associated Legendre products of the data, leveraging properties of the spherical heat kernel. We show how our approach can be used to assess the quality of cortical parcellations with respect to connectivity. We further present empirical results that suggest that "discrete" connectomes derived from our model have substantially higher test-retest reliability compared to standard methods. In this, the expanded form of this paper for journal publication, we also explore parcellation free analysis techniques that avoid the use of explicit partitions of the cortical surface altogether. We provide an analysis of sex effects on our proposed continuous representation, demonstrating the utility of this approach.
我们提出了一种基于泊松点过程的结构脑连接的连续模型。该模型将追踪中的每条流线曲线视为连接组空间(这里是灰质/白质界面的乘积空间)中的一个观察事件。我们通过核密度估计来近似模型参数。为了处理繁重的计算负担,我们通过预先计算数据的关联勒让德乘积,利用球形热核的性质,开发了一种快速参数估计方法。我们展示了如何使用我们的方法来评估皮质分割相对于连接的质量。我们进一步提出了实证结果,表明与标准方法相比,我们的模型得出的“离散”连接组具有更高的测试 - 重测可靠性。在本文的期刊发表扩展形式中,我们还探索了完全避免显式皮质表面分区的无分割分析技术。我们对我们提出的连续表示形式进行了性别效应分析,证明了这种方法的实用性。