Suppr超能文献

使用空间点过程连续表示大脑连接。

Continuous representations of brain connectivity using spatial point processes.

机构信息

Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, United States; Information Sciences Institute, University of Southern California, United States; Department of Computer Science, University of Southern California, United States.

Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, United States.

出版信息

Med Image Anal. 2017 Oct;41:32-39. doi: 10.1016/j.media.2017.04.013. Epub 2017 Apr 28.

Abstract

We present a continuous model for structural brain connectivity based on the Poisson point process. The model treats each streamline curve in a tractography as an observed event in connectome space, here the product space of the gray matter/white matter interfaces. We approximate the model parameter via kernel density estimation. To deal with the heavy computational burden, we develop a fast parameter estimation method by pre-computing associated Legendre products of the data, leveraging properties of the spherical heat kernel. We show how our approach can be used to assess the quality of cortical parcellations with respect to connectivity. We further present empirical results that suggest that "discrete" connectomes derived from our model have substantially higher test-retest reliability compared to standard methods. In this, the expanded form of this paper for journal publication, we also explore parcellation free analysis techniques that avoid the use of explicit partitions of the cortical surface altogether. We provide an analysis of sex effects on our proposed continuous representation, demonstrating the utility of this approach.

摘要

我们提出了一种基于泊松点过程的结构脑连接的连续模型。该模型将追踪中的每条流线曲线视为连接组空间(这里是灰质/白质界面的乘积空间)中的一个观察事件。我们通过核密度估计来近似模型参数。为了处理繁重的计算负担,我们通过预先计算数据的关联勒让德乘积,利用球形热核的性质,开发了一种快速参数估计方法。我们展示了如何使用我们的方法来评估皮质分割相对于连接的质量。我们进一步提出了实证结果,表明与标准方法相比,我们的模型得出的“离散”连接组具有更高的测试 - 重测可靠性。在本文的期刊发表扩展形式中,我们还探索了完全避免显式皮质表面分区的无分割分析技术。我们对我们提出的连续表示形式进行了性别效应分析,证明了这种方法的实用性。

相似文献

1
Continuous representations of brain connectivity using spatial point processes.使用空间点过程连续表示大脑连接。
Med Image Anal. 2017 Oct;41:32-39. doi: 10.1016/j.media.2017.04.013. Epub 2017 Apr 28.
2
A Continuous Model of Cortical Connectivity.一种皮质连接的连续模型。
Med Image Comput Comput Assist Interv. 2016 Oct;9900:157-165. doi: 10.1007/978-3-319-46720-7_19. Epub 2016 Oct 2.
4
Connectome spatial smoothing (CSS): Concepts, methods, and evaluation.连接组空间平滑(CSS):概念、方法与评估
Neuroimage. 2022 Apr 15;250:118930. doi: 10.1016/j.neuroimage.2022.118930. Epub 2022 Jan 22.
6
Modelling white matter in gyral blades as a continuous vector field.将脑回叶片中的白质模拟为连续的向量场。
Neuroimage. 2021 Feb 15;227:117693. doi: 10.1016/j.neuroimage.2020.117693. Epub 2020 Dec 30.
8
Mapping population-based structural connectomes.基于人群的结构连接组学图谱绘制。
Neuroimage. 2018 May 15;172:130-145. doi: 10.1016/j.neuroimage.2017.12.064. Epub 2018 Feb 3.

引用本文的文献

6
Quantification of structural brain connectivity via a conductance model.通过导纳模型对结构脑连接进行定量分析。
Neuroimage. 2019 Apr 1;189:485-496. doi: 10.1016/j.neuroimage.2019.01.033. Epub 2019 Jan 21.
7
Mapping population-based structural connectomes.基于人群的结构连接组学图谱绘制。
Neuroimage. 2018 May 15;172:130-145. doi: 10.1016/j.neuroimage.2017.12.064. Epub 2018 Feb 3.

本文引用的文献

1
Sparse graphs using exchangeable random measures.使用可交换随机测度的稀疏图。
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1295-1366. doi: 10.1111/rssb.12233. Epub 2017 Sep 23.
2
A Continuous Model of Cortical Connectivity.一种皮质连接的连续模型。
Med Image Comput Comput Assist Interv. 2016 Oct;9900:157-165. doi: 10.1007/978-3-319-46720-7_19. Epub 2016 Oct 2.
4
Connectome sensitivity or specificity: which is more important?连接组的敏感性还是特异性:哪个更重要?
Neuroimage. 2016 Nov 15;142:407-420. doi: 10.1016/j.neuroimage.2016.06.035. Epub 2016 Jun 28.
5
Group-wise parcellation of the cortex through multi-scale spectral clustering.通过多尺度谱聚类进行皮层的分组分割。
Neuroimage. 2016 Aug 1;136:68-83. doi: 10.1016/j.neuroimage.2016.05.035. Epub 2016 May 15.
10
Dipy, a library for the analysis of diffusion MRI data.Dipy,一个用于分析扩散磁共振成像数据的库。
Front Neuroinform. 2014 Feb 21;8:8. doi: 10.3389/fninf.2014.00008. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验