Suppr超能文献

通过非接触式微波腔微扰测量的大规模封装外延石墨烯中表面电导率和介电损耗角正切的保持

Preservation of Surface Conductivity and Dielectric Loss Tangent in Large-Scale, Encapsulated Epitaxial Graphene Measured by Noncontact Microwave Cavity Perturbations.

作者信息

Rigosi Albert F, Glavin Nicholas R, Liu Chieh-I, Yang Yanfei, Obrzut Jan, Hill Heather M, Hu Jiuning, Lee Hsin-Yen, Hight Walker Angela R, Richter Curt A, Elmquist Randolph E, Newell David B

机构信息

National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, 20899, USA.

Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433, USA.

出版信息

Small. 2017 Jul;13(26). doi: 10.1002/smll.201700452. Epub 2017 May 19.

Abstract

Regarding the improvement of current quantized Hall resistance (QHR) standards, one promising avenue is the growth of homogeneous monolayer epitaxial graphene (EG). A clean and simple process is used to produce large, precise areas of EG. Properties like the surface conductivity and dielectric loss tangent remain unstable when EG is exposed to air due to doping from molecular adsorption. Experimental results are reported on the extraction of the surface conductivity and dielectric loss tangent from data taken with a noncontact resonance microwave cavity, assembled with an air-filled, standard R100 rectangular waveguide configuration. By using amorphous boron nitride (a-BN) as an encapsulation layer, stability of EG's electrical properties under ambient laboratory conditions is greatly improved. Moreover, samples are exposed to a variety of environmental and chemical conditions. Both thicknesses of a-BN encapsulation are sufficient to preserve surface conductivity and dielectric loss tangent to within 10% of its previously measured value, a result which has essential importance in the mass production of millimeter-scale graphene devices demonstrating electrical stability.

摘要

关于当前量子化霍尔电阻(QHR)标准的改进,一个有前景的途径是生长均匀的单层外延石墨烯(EG)。采用一种清洁且简单的工艺来制备大面积、精确的EG区域。当EG暴露于空气中时,由于分子吸附导致的掺杂,其表面电导率和介电损耗角正切等性质会保持不稳定。本文报道了利用一个与充满空气的标准R100矩形波导配置组装的非接触共振微波腔所采集的数据来提取表面电导率和介电损耗角正切的实验结果。通过使用非晶态氮化硼(a-BN)作为封装层,EG在实验室环境条件下的电学性质稳定性得到了极大提高。此外,样品还暴露于各种环境和化学条件下。两种厚度的a-BN封装都足以将表面电导率和介电损耗角正切保持在其先前测量值的10%以内,这一结果对于展示电稳定性的毫米级石墨烯器件的大规模生产至关重要。

相似文献

5
Surface conductance of graphene from non-contact resonant cavity.基于非接触共振腔的石墨烯表面电导率
Measurement (Lond). 2016 Jun;87:146-151. doi: 10.1016/j.measurement.2016.03.020. Epub 2016 Mar 15.

引用本文的文献

7
Development of gateless quantum Hall checkerboard junction devices.无栅量子霍尔棋盘结器件的开发。
J Phys D Appl Phys. 2020;53(34). doi: https://doi.org/10.1088/1361-6463/ab8d6f.

本文引用的文献

3
Surface conductance of graphene from non-contact resonant cavity.基于非接触共振腔的石墨烯表面电导率
Measurement (Lond). 2016 Jun;87:146-151. doi: 10.1016/j.measurement.2016.03.020. Epub 2016 Mar 15.
6
Low carrier density epitaxial graphene devices on SiC.SiC 上低载流子密度外延石墨烯器件。
Small. 2015 Jan 7;11(1):90-5. doi: 10.1002/smll.201400989. Epub 2014 Aug 18.
7
A roadmap for graphene.石墨烯路线图
Nature. 2012 Oct 11;490(7419):192-200. doi: 10.1038/nature11458.
9
Disordered Fermi liquid in epitaxial graphene from quantum transport measurements.量子输运测量揭示外延石墨烯中的无序费米液体
Phys Rev Lett. 2011 Oct 14;107(16):166602. doi: 10.1103/PhysRevLett.107.166602. Epub 2011 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验