Suppr超能文献

在微特斯拉场中通过仲氢可逆交换实现超极化的长寿命碳核自旋态。

Long-Lived C Nuclear Spin States Hyperpolarized by Parahydrogen in Reversible Exchange at Microtesla Fields.

作者信息

Zhou Zijian, Yu Jin, Colell Johannes F P, Laasner Raul, Logan Angus, Barskiy Danila A, Shchepin Roman V, Chekmenev Eduard Y, Blum Volker, Warren Warren S, Theis Thomas

机构信息

Department of Chemistry, Duke University , Durham, North Carolina 27708, United States.

Department of Mechanical Engineering and Materials Science, Duke University , Durham, North Carolina 27708, United States.

出版信息

J Phys Chem Lett. 2017 Jul 6;8(13):3008-3014. doi: 10.1021/acs.jpclett.7b00987. Epub 2017 Jun 19.

Abstract

Parahydrogen is an inexpensive and readily available source of hyperpolarization used to enhance magnetic resonance signals by up to four orders of magnitude above thermal signals obtained at ∼10 T. A significant challenge for applications is fast signal decay after hyperpolarization. Here we use parahydrogen-based polarization transfer catalysis at microtesla fields (first introduced as SABRE-SHEATH) to hyperpolarize C spin pairs and find decay time constants of 12 s for magnetization at 0.3 mT, which are extended to 2 min at that same field, when long-lived singlet states are hyperpolarized instead. Enhancements over thermal at 8.5 T are between 30 and 170 fold (0.02 to 0.12% polarization). We control the spin dynamics of polarization transfer by choice of microtesla field, allowing for deliberate hyperpolarization of either magnetization or long-lived singlet states. Density functional theory calculations and experimental evidence identify two energetically close mechanisms for polarization transfer: First, a model that involves direct binding of the C pair to the polarization transfer catalyst and, second, a model transferring polarization through auxiliary protons in substrates.

摘要

仲氢是一种廉价且易于获得的超极化源,用于将磁共振信号增强至比在约10 T下获得的热信号高四个数量级。应用中的一个重大挑战是超极化后信号快速衰减。在此,我们使用基于仲氢的微特斯拉场极化转移催化(最初称为SABRE-SHEATH)来使碳自旋对超极化,并发现对于0.3 mT的磁化,其衰减时间常数为12 s,而当长寿命单重态被超极化时,在同一磁场下该时间常数可延长至2分钟。在8.5 T下相对于热信号的增强倍数在30至170倍之间(极化率为0.02%至0.12%)。我们通过选择微特斯拉场来控制极化转移的自旋动力学,从而能够有意地使磁化或长寿命单重态超极化。密度泛函理论计算和实验证据确定了两种能量相近的极化转移机制:第一,一种涉及碳对与极化转移催化剂直接结合的模型;第二,一种通过底物中的辅助质子转移极化的模型。

相似文献

1
Long-Lived C Nuclear Spin States Hyperpolarized by Parahydrogen in Reversible Exchange at Microtesla Fields.
J Phys Chem Lett. 2017 Jul 6;8(13):3008-3014. doi: 10.1021/acs.jpclett.7b00987. Epub 2017 Jun 19.
2
"Direct" C Hyperpolarization of C-Acetate by MicroTesla NMR Signal Amplification by Reversible Exchange (SABRE).
Angew Chem Int Ed Engl. 2020 Jan 2;59(1):418-423. doi: 10.1002/anie.201910506. Epub 2019 Nov 14.
3
Synthesis and N NMR Signal Amplification by Reversible Exchange of [ N]Dalfampridine at Microtesla Magnetic Fields.
Chemphyschem. 2021 May 17;22(10):960-967. doi: 10.1002/cphc.202100109. Epub 2021 Apr 16.
4
N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH.
J Phys Chem C Nanomater Interfaces. 2015 Apr 23;119(16):8786-8797. doi: 10.1021/acs.jpcc.5b01799. Epub 2015 Mar 30.
5
Spin-Lattice Relaxation of Hyperpolarized Metronidazole in Signal Amplification by Reversible Exchange in Micro-Tesla Fields.
J Phys Chem C Nanomater Interfaces. 2018 Mar 8;122(9):4984-4996. doi: 10.1021/acs.jpcc.8b00283. Epub 2018 Feb 27.
6
Hyperpolarization of cis- N -Azobenzene by Parahydrogen at Ultralow Magnetic Fields*.
Chemphyschem. 2021 Jul 16;22(14):1527-1534. doi: 10.1002/cphc.202100160. Epub 2021 Jun 8.
7
MATRESHCA: Microtesla Apparatus for Transfer of Resonance Enhancement of Spin Hyperpolarization via Chemical Exchange and Addition.
Anal Chem. 2024 Mar 12;96(10):4171-4179. doi: 10.1021/acs.analchem.3c05233. Epub 2024 Feb 15.
10
Proton-Only Sensing of Hyperpolarized [1,2-C]Pyruvate.
ACS Sens. 2022 Dec 23;7(12):3773-3781. doi: 10.1021/acssensors.2c01608. Epub 2022 Nov 22.

引用本文的文献

1
Representation of population exchange at level anti-crossings.
Magn Reson (Gott). 2020 Dec 23;1(2):347-365. doi: 10.5194/mr-1-347-2020. eCollection 2020.
2
Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1-C]pyruvate in vivo.
J Magn Reson Open. 2023 Dec;16-17. doi: 10.1016/j.jmro.2023.100129. Epub 2023 Jul 13.
3
Spin dynamics of [1,2-C]pyruvate hyperpolarization by parahydrogen in reversible exchange at micro Tesla fields.
Phys Chem Chem Phys. 2023 Jun 21;25(24):16446-16458. doi: 10.1039/d3cp00843f.
4
Real-Time Reaction Monitoring of Azide-Alkyne Cycloadditions Using Benchtop NMR-Based Signal Amplification by Reversible Exchange (SABRE).
ACS Meas Sci Au. 2023 Jan 10;3(2):134-142. doi: 10.1021/acsmeasuresciau.2c00065. eCollection 2023 Apr 19.
5
Spin Hyperpolarization in Modern Magnetic Resonance.
Chem Rev. 2023 Feb 22;123(4):1417-1551. doi: 10.1021/acs.chemrev.2c00534. Epub 2023 Jan 26.
8
Advancing homogeneous catalysis for parahydrogen-derived hyperpolarisation and its NMR applications.
Chem Sci. 2022 Mar 22;13(17):4670-4696. doi: 10.1039/d2sc00737a. eCollection 2022 May 4.
9
Real-Time High-Sensitivity Reaction Monitoring of Important Nitrogen-Cycle Synthons by N Hyperpolarized Nuclear Magnetic Resonance.
J Am Chem Soc. 2022 May 18;144(19):8756-8769. doi: 10.1021/jacs.2c02619. Epub 2022 May 4.
10
Hyperpolarization study on remdesivir with its biological reaction monitoring signal amplification by reversible exchange.
RSC Adv. 2022 Feb 2;12(7):4377-4381. doi: 10.1039/d2ra00062h. eCollection 2022 Jan 28.

本文引用的文献

1
The Absence of Quadrupolar Nuclei Facilitates Efficient C Hyperpolarization via Reversible Exchange with Parahydrogen.
Chemphyschem. 2017 Jun 20;18(12):1493-1498. doi: 10.1002/cphc.201700416. Epub 2017 May 18.
2
Generalizing, Extending, and Maximizing Nitrogen-15 Hyperpolarization Induced by Parahydrogen in Reversible Exchange.
J Phys Chem C Nanomater Interfaces. 2017 Mar 30;121(12):6626-6634. doi: 10.1021/acs.jpcc.6b12097. Epub 2017 Feb 2.
3
Delivering strong H nuclear hyperpolarization levels and long magnetic lifetimes through signal amplification by reversible exchange.
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):E3188-E3194. doi: 10.1073/pnas.1620457114. Epub 2017 Apr 4.
4
The Elephant in the Room of Density Functional Theory Calculations.
J Phys Chem Lett. 2017 Apr 6;8(7):1449-1457. doi: 10.1021/acs.jpclett.7b00255. Epub 2017 Mar 20.
6
A Hyperpolarizable H Magnetic Resonance Probe for Signal Detection 15 Minutes after Spin Polarization Storage.
Angew Chem Int Ed Engl. 2016 Dec 12;55(50):15642-15645. doi: 10.1002/anie.201609186. Epub 2016 Nov 15.
7
Long-lived states to sustain SABRE hyperpolarised magnetisation.
Phys Chem Chem Phys. 2016 Sep 14;18(36):24905-24911. doi: 10.1039/c6cp02844f.
8
A method for imaging and spectroscopy using γ-rays and magnetic resonance.
Nature. 2016 Sep 29;537(7622):652-5. doi: 10.1038/nature19775.
9
10
N Hyperpolarization of Imidazole-N for Magnetic Resonance pH Sensing via SABRE-SHEATH.
ACS Sens. 2016 Jun 24;1(6):640-644. doi: 10.1021/acssensors.6b00231. Epub 2016 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验