Zhou Zijian, Yu Jin, Colell Johannes F P, Laasner Raul, Logan Angus, Barskiy Danila A, Shchepin Roman V, Chekmenev Eduard Y, Blum Volker, Warren Warren S, Theis Thomas
Department of Chemistry, Duke University , Durham, North Carolina 27708, United States.
Department of Mechanical Engineering and Materials Science, Duke University , Durham, North Carolina 27708, United States.
J Phys Chem Lett. 2017 Jul 6;8(13):3008-3014. doi: 10.1021/acs.jpclett.7b00987. Epub 2017 Jun 19.
Parahydrogen is an inexpensive and readily available source of hyperpolarization used to enhance magnetic resonance signals by up to four orders of magnitude above thermal signals obtained at ∼10 T. A significant challenge for applications is fast signal decay after hyperpolarization. Here we use parahydrogen-based polarization transfer catalysis at microtesla fields (first introduced as SABRE-SHEATH) to hyperpolarize C spin pairs and find decay time constants of 12 s for magnetization at 0.3 mT, which are extended to 2 min at that same field, when long-lived singlet states are hyperpolarized instead. Enhancements over thermal at 8.5 T are between 30 and 170 fold (0.02 to 0.12% polarization). We control the spin dynamics of polarization transfer by choice of microtesla field, allowing for deliberate hyperpolarization of either magnetization or long-lived singlet states. Density functional theory calculations and experimental evidence identify two energetically close mechanisms for polarization transfer: First, a model that involves direct binding of the C pair to the polarization transfer catalyst and, second, a model transferring polarization through auxiliary protons in substrates.
仲氢是一种廉价且易于获得的超极化源,用于将磁共振信号增强至比在约10 T下获得的热信号高四个数量级。应用中的一个重大挑战是超极化后信号快速衰减。在此,我们使用基于仲氢的微特斯拉场极化转移催化(最初称为SABRE-SHEATH)来使碳自旋对超极化,并发现对于0.3 mT的磁化,其衰减时间常数为12 s,而当长寿命单重态被超极化时,在同一磁场下该时间常数可延长至2分钟。在8.5 T下相对于热信号的增强倍数在30至170倍之间(极化率为0.02%至0.12%)。我们通过选择微特斯拉场来控制极化转移的自旋动力学,从而能够有意地使磁化或长寿命单重态超极化。密度泛函理论计算和实验证据确定了两种能量相近的极化转移机制:第一,一种涉及碳对与极化转移催化剂直接结合的模型;第二,一种通过底物中的辅助质子转移极化的模型。