School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
Sci Rep. 2017 Jun 12;7(1):3210. doi: 10.1038/s41598-017-03547-6.
Responses of different neurons to electric field (EF) are highly variable, which depends on intrinsic properties of cell type. Here we use multi-compartmental biophysical models to investigate how morphologic features affect EF-induced responses in hippocampal CA1 pyramidal neurons. We find that the basic morphologies of neuronal elements, including diameter, length, bend, branch, and axon terminals, are all correlated with somatic depolarization through altering the current sources or sinks created by applied field. Varying them alters the EF threshold for triggering action potentials (APs), and then determines cell sensitivity to suprathreshold field. Introducing excitatory postsynaptic potential increases cell excitability and reduces morphology-dependent EF firing threshold. It is also shown that applying identical subthreshold EF results in distinct polarizations on cell membrane with different realistic morphologies. These findings shed light on the crucial role of morphologies in determining field-induced neural response from the point of view of biophysical models. The predictions are conducive to better understanding the variability in modulatory effects of EF stimulation at the cellular level, which could also aid the interpretations of how applied fields activate central nervous system neurons and affect relevant circuits.
不同神经元对电场 (EF) 的反应具有高度可变性,这取决于细胞类型的固有特性。在这里,我们使用多腔室生物物理模型来研究形态特征如何影响海马 CA1 锥体神经元中 EF 诱导的反应。我们发现,神经元元件的基本形态,包括直径、长度、弯曲、分支和轴突末梢,通过改变施加场产生的电流源或电流汇,都与体细胞去极化相关。改变它们会改变引发动作电位 (AP) 的 EF 阈值,进而决定细胞对超阈值场的敏感性。引入兴奋性突触后电位会增加细胞兴奋性,并降低形态依赖性 EF 触发阈值。研究还表明,施加相同的亚阈值 EF 会导致具有不同真实形态的细胞膜上产生不同的极化。这些发现从生物物理模型的角度揭示了形态在决定场诱导神经反应中的关键作用。这些预测有助于更好地理解 EF 刺激在细胞水平上的调节作用的可变性,这也有助于解释施加的场如何激活中枢神经系统神经元并影响相关电路。