Suppr超能文献

癌症预测、预防和个性化医疗中的模式识别

Pattern recognition for predictive, preventive, and personalized medicine in cancer.

作者信息

Cheng Tingting, Zhan Xianquan

机构信息

Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People's Republic of China.

Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People's Republic of China.

出版信息

EPMA J. 2017 Mar 9;8(1):51-60. doi: 10.1007/s13167-017-0083-9. eCollection 2017 Mar.

Abstract

Predictive, preventive, and personalized medicine (PPPM) is the hot spot and future direction in the field of cancer. Cancer is a complex, whole-body disease that involved multi-factors, multi-processes, and multi-consequences. A series of molecular alterations at different levels of genes (genome), RNAs (transcriptome), proteins (proteome), peptides (peptidome), metabolites (metabolome), and imaging characteristics (radiome) that resulted from exogenous and endogenous carcinogens are involved in tumorigenesis and mutually associate and function in a network system, thus determines the difficulty in the use of a single molecule as biomarker for personalized prediction, prevention, diagnosis, and treatment for cancer. A key molecule-panel is necessary for accurate PPPM practice. Pattern recognition is an effective methodology to discover key molecule-panel for cancer. The modern omics, computation biology, and systems biology technologies lead to the possibility in recognizing really reliable molecular pattern for PPPM practice in cancer. The present article reviewed the pathophysiological basis, methodology, and perspective usages of pattern recognition for PPPM in cancer so that our previous opinion on multi-parameter strategies for PPPM in cancer is translated into real research and development of PPPM or precision medicine (PM) in cancer.

摘要

预测、预防和个性化医疗(PPPM)是癌症领域的热点和未来发展方向。癌症是一种复杂的全身性疾病,涉及多因素、多过程和多后果。由外源性和内源性致癌物导致的基因(基因组)、RNA(转录组)、蛋白质(蛋白质组)、肽(肽组)、代谢物(代谢组)以及影像特征(放射组)等不同层面的一系列分子改变参与肿瘤发生,并在一个网络系统中相互关联且发挥作用,从而决定了使用单一分子作为癌症个性化预测、预防、诊断和治疗生物标志物的难度。准确的PPPM实践需要一个关键的分子组合。模式识别是发现癌症关键分子组合的有效方法。现代组学、计算生物学和系统生物学技术使得识别真正可靠的癌症PPPM实践分子模式成为可能。本文综述了癌症PPPM模式识别的病理生理基础、方法及应用前景,以便将我们之前关于癌症PPPM多参数策略的观点转化为癌症PPPM或精准医疗(PM)的实际研发。

相似文献

2
Clinical multi-omics strategies for the effective cancer management.临床多组学策略在癌症有效管理中的应用。
J Proteomics. 2018 Sep 30;188:97-106. doi: 10.1016/j.jprot.2017.08.010. Epub 2017 Aug 15.

引用本文的文献

本文引用的文献

1
The challenges of tumor genetic diversity.肿瘤基因多样性的挑战。
Cancer. 2017 May 15;123(6):917-927. doi: 10.1002/cncr.30430. Epub 2016 Nov 8.
6
CRAC channels, calcium, and cancer in light of the driver and passenger concept.基于驱动因素和乘客因素概念的CRAC通道、钙与癌症
Biochim Biophys Acta. 2016 Jun;1863(6 Pt B):1408-17. doi: 10.1016/j.bbamcr.2015.12.009. Epub 2015 Dec 17.
7
Cancer Genomics: Diversity and Disparity Across Ethnicity and Geography.癌症基因组学:种族和地理差异与多样性。
J Clin Oncol. 2016 Jan 1;34(1):91-101. doi: 10.1200/JCO.2015.62.0096. Epub 2015 Nov 17.
8
Genenames.org: the HGNC resources in 2015.Genenames.org:2015年的HGNC资源。
Nucleic Acids Res. 2015 Jan;43(Database issue):D1079-85. doi: 10.1093/nar/gku1071. Epub 2014 Oct 31.
9
MicroRNAs as promising biomarkers in cancer diagnostics.微小 RNA 作为癌症诊断有前景的生物标志物。
Biomark Res. 2014 Oct 22;2:19. doi: 10.1186/2050-7771-2-19. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验